mgblar.cpp 43.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/**
 * \file sdk/load-and-run/src/mgblar.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "./mgblar.h"
#include "./infile_persistent_cache.h"
14 15
#include "./json_loader.h"
#include "./npy.h"
16

17
#include "megbrain/opr/dnn/convolution.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#include "megbrain/utils/debug.h"
#include "megbrain/serialization/serializer.h"
#include "megbrain/serialization/extern_c_opr.h"
#include "megbrain/plugin/opr_io_dump.h"
#include "megbrain/plugin/profiler.h"
#include "megbrain/plugin/num_range_checker.h"
#include "megbrain/plugin/cpu_dispatch_checker.h"
#include "megbrain/plugin/var_value_checker.h"
#include "megbrain/opr/io.h"
#include "megbrain/opr/utility.h"
#include "megbrain/gopt/inference.h"
#include "megbrain/comp_node_env.h"

#include "megbrain/system.h"
#include "megbrain/version.h"
#include "megdnn/version.h"

#include <cstdlib>
#include <cstring>
#include <cerrno>
#include <cstdio>
39 40
#include <cctype>
#include <numeric>
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
#include <sstream>

#if defined(_WIN32)
#include <io.h>
#define F_OK 0
#define access(a, b) _access(a, b)
#elif __linux__ || __unix__ || __APPLE__
#include <unistd.h>
#include <dlfcn.h>
#endif

#if MGB_ENABLE_TENSOR_RT
#include "megbrain/tensorrt/tensorrt_engine_cache.h"
#endif

using namespace mgb;

namespace {

const char* OPTIONS_DESC =
R"__usage__(
  --cpu|--cpu-default
)__usage__"
R"__usage__(
    Require to compute on CPU or OpenCL. By default CUDA is used if available,
    and CPU is used if CUDA is not available. Use --cpu-default to compute on
    CPU and dispatch all tasks in the caller thread.
  --multithread|--multithread-default <nr_thread>
    Use --multithread to compute on CPU with multi threads.
    Use --multithread-default to compute on CPU with multi threads and
    the caller thread is main thread of the multi thread pool, follow by
    thread number
  --multi-thread-core-ids
    The multi thread affinity core set, separated with ',', the number of digital
    will be the thread number. for example:--multi-thread-core-ids "0,1,2,3", the
    number thread if 4,the main thread binding the last core '3',
    for best performance, the main thread should binding to the fast core.
  --profile|--profile-host <output>
    Write profiling result to given file. The output file is in JSON format and
    can be processed by scripts in MegHair/utils/debug.
    Note:
        For some backends (like opencl), special options need to be enabled for
        profiling device time, which may cause additional overhead and make it
        hard to profile host time. Use --profile-host to focus on host time
        profiling.
86
  --input [ filepath | string]
87
    Set up inputs for megbrain model. for example: --data image.ppm --data
88 89 90
    param.json --data bbox:bbox.npy@batchid:b.npy --data rect:[0,0,227,227];
    batchid:0,1,2,3. --io-dump or --bin-io-dump
    should be enabled at the same time.
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  --io-dump <output> | --bin-io-dump <output dir>
    Dump input/output values of all internal variables to output file or
    directory, in text or binary format. The binary file can be parsed by
    `megbrain.plugin.load_tensor_binary`.
  --bin-out-dump <output dir>
    Dump output tensor values in binary format to given directory.
  --iter <num>
    Number of iterations to run for each testcase.
  --warmup-iter <num>
    Number of warm-up iterations, which are not included in the time statistics.
  --range <value>
    Enable tensor value range check. Exception would be raised if the absolute
    value of any element of any variable does not fit in given range. This can
    be used to debug NaN values.
  --check-dispatch
    Enable CPU dispatch checker, which prints a warning message if on operator
    does not the dispatch function. This is used to find potential bugs in
    MegDNN.
  --check-var-value <switch_interval[:start_i dx]>
    Enable VarValueChecker plugin. Refer to its doc for more details.
  --no-sanity-check
    Disable var sanity check on the first run. Var sanity check is enabled on
    the first-time execution by default, and can be used to find some potential
    memory access errors in the operator implementation.
  --disable-mem-opt
    Disable memory optimizations. This is used to check whether memory
    optimization is the cause for unexpected behavior.
  --fake-first
    Enable fake exec for the first run. In fake exec mode, some initialization
    job would be done, but no actual computing is performed. This can be used in
    an SDK right after loading the model to reduce execution latency in the real
    fist-time computing. It requires input shapes to be correctly setup.
  --const-shape
    Set `GraphLoadConfig::const_var_shape` to true before loading the graph.
    This can be used to reduce memory usage since some static inference data
    structures can be omitted.
  --share-param-mem
    Share the memory used by model params with model storage. This can be used
    to reduce memory usage when computing on CPU.
  --record-comp-seq | --record-comp-seq2
    Record the computing sequence, in level 1 or 2. It reduces overhead of API
    calls of some asynchronous computing devices, especially for OpenCL. In
    level 2 the computing graph can be destructed to reduce memory usage. Read
    the doc of `ComputingGraph::Options::comp_node_seq_record_level` for more
    details.
)__usage__"
#if MGB_ENABLE_FASTRUN
R"__usage__(
  --fast-run
    Enable fast-run mode. Operators with multiple algorithms would be profiled
    on the real device with actual input shapes.
    See `mgb::gopt::enable_opr_algo_profiling_inplace` for more details.
)__usage__"
#endif
R"__usage__(
  --fast-run-algo-policy <path>
    It will read the cache file before profile, and save new fastrun in cache file.
148 149 150 151
  --reproducible
    Enable choose algo which is reproducible. It mainly used for cudnn algos.
    See https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#reproducibility
    for more details.
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  --wait-gdb
    Print PID and wait for a line from stdin before starting execution. Useful
    for waiting for gdb attach.
  --c-opr-lib <path>
    Load external operator library. It must implement `mgb_c_opr_init` as the
    entry point.
  --thread <num>
    Number of threads to run concurrently. All threads perform the same work of
    loading and executing models. This is used for test thread safety, not for
    speed up on multiple cores.
  --disable-assert-throw
    Do not throw exception in case AssertEqual fails. Note that the exit code
    would also be zero if this option is enabled. This should only be used for
    debug.
  --copy-to-host
    Whether copy output from device to host.
    This is used for checking the performance in real scenarios including output copy.
  --workspace-limit <num>
    set workspace_limit for execution strategy for oprs with multiple algorithms.
    The default is SIZE_MAX(bytes).
  --verbose
    Increase verbosity for megbrain log.
)__usage__"
#if MGB_ENABLE_TENSOR_RT
R"__usage__(
  --tensorrt
    Execute supported operators with TensorRT. Can only be used on Nvidia GPUs,
    i.e. comp node is xpu or gpu.
  --tensorrt-cache <path>
    Set the TensorRT engine cache path for serialized prebuilt ICudaEngine
)__usage__"
#endif
R"__usage__(
  --enable-jit
    Execute supported operators with JIT(now only support NVRTC). Can only be used on Nvidia GPUs.
)__usage__"
R"__usage__(
  --winograd-transform
    Execute opr replace, replace weights by winograd transform. Currently support on conv bias opr.
)__usage__"
R"__usage__(
  --enable-chwn4
    Execute operators with kernels implemented in MegDNN with CHWN4 tensor format. Can only be used
    on Nvidia GPUs, whose compute capability is above 6.1.
)__usage__"

;

200 201
struct DataParser {
    struct Brace {
202
        std::weak_ptr<Brace> parent;
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
        std::vector<std::shared_ptr<Brace>> chidren;
    };

    void feed(const std::string& path) {
        std::string blob_name = "data", blob_string = path;
        size_t sep = path.find(":");
        if (sep != std::string::npos) {
            blob_name = path.substr(0, sep);
            blob_string = path.substr(sep + 1);
        }

        auto endWith = [blob_string](std::string suffix) -> bool {
            return blob_string.rfind(suffix) ==
                   (blob_string.length() - suffix.length());
        };

        if (endWith(".ppm") || endWith(".pgm")) {
            parse_image(blob_name, blob_string);
        } else if (endWith(".json")) {
            parse_json(blob_string);
        } else if (endWith(".npy")) {
            parse_npy(blob_name, blob_string);
        } else {
            parse_string(blob_name, blob_string);
        }
    }

    std::map<std::string, HostTensorND> inputs;

private:
    void parse_json(const std::string& path) {
        JsonLoader json;
        std::shared_ptr<JsonLoader::Value> root = json.load(path.c_str());

        mgb_assert(root != nullptr, "parse json %s fail", path.c_str());

        // parse json to data map
        const std::string SHAPE = "shape", TYPE = "type", RAW = "raw";
        for (auto& item : root->objects()) {
            auto&& value = *item.second;
            auto&& shape = value[SHAPE];
            mgb_assert(shape->is_array());

            auto&& type = value[TYPE];
            mgb_assert(type->is_str());

            auto&& raw = value[RAW];
            mgb_assert(raw->is_array());

            megdnn::SmallVector<size_t> data_shape;
            for (auto&& shape_ptr : shape->array()) {
                data_shape.append(
                        {static_cast<size_t>(std::round(shape_ptr->number()))});
            }

            // get type
            const std::map<std::string, megdnn::DType> type_map = {
                    {"float32", dtype::Float32()}, {"float", dtype::Float32()},
                    {"int32", dtype::Int32()},     {"int", dtype::Int32()},
                    {"int8", dtype::Int8()},       {"uint8", dtype::Uint8()}};

            const std::string& type_str = type->str();
            mgb_assert(type_map.find(type_str) != type_map.end(),
                       "unknown json data type for --data");

            DType datatype = type_map.at(type_str);
            HostTensorND hv;
            hv.comp_node(mgb::CompNode::default_cpu(), true)
                    .dtype(datatype)
                    .resize(data_shape);
            dt_byte* raw_ptr = hv.raw_ptr();
            size_t elem_size = datatype.size();

            // get raw
            const size_t array_size = raw->len();
            for (size_t idx = 0; idx < array_size; ++idx) {
                double tmp = (*raw)[idx]->number();

                switch (datatype.enumv()) {
                    case megdnn::DTypeEnum::Int32: {
                        int32_t ival = std::round(tmp);
                        memcpy(raw_ptr + idx * elem_size, &ival, elem_size);
                    } break;
                    case megdnn::DTypeEnum::Uint8:
                    case megdnn::DTypeEnum::Int8: {
                        int8_t cval = std::round(tmp);
                        memcpy(raw_ptr + idx, &cval, sizeof(int8_t));
                    } break;
                    case megdnn::DTypeEnum::Float32: {
                        float fval = tmp;
                        memcpy(raw_ptr + idx * elem_size, &fval, elem_size);
                    } break;
                    default:
                        break;
                }
            }

            inputs.insert(std::make_pair(item.first, std::move(hv)));
        }
    }

    void parse_image(const std::string& name, const std::string& path) {
        // load ppm/pgm
        std::ifstream fin;
        fin.open(path, std::ifstream::binary | std::ifstream::in);
        mgb_assert(fin.is_open(), "open file %s failed for --input",
                   path.c_str());

        size_t w = 0, h = 0, channel = 0;
        char buf[128] = {0};

        fin.getline(buf, 128);
        if ('5' == buf[1]) {
            channel = 1;
        } else if ('6' == buf[1]) {
            channel = 3;
        } else {
            mgb_assert(0, "not a formal ppm/pgm");
        }

        while (fin.getline(buf, 128)) {
            // skip OCV comment, check
            // https://github.com/opencv/opencv/pull/17006
            if (buf[0] == '#') {
                continue;
            }
            break;
        }
        std::stringstream ss;
        ss << std::string(buf);
        ss >> w;
        ss >> h;

        mgb_assert(w > 0 and h > 0);

        HostTensorND hv;
        hv.comp_node(mgb::CompNode::default_cpu(), true)
                .dtype(dtype::Uint8())
                .resize({1, h, w, channel});

        fin.read((char*)(hv.raw_ptr()), hv.layout().total_nr_elems());
        fin.close();
        inputs.insert(std::make_pair(name, std::move(hv)));
    }

    void parse_npy(const std::string& name, const std::string& path) {
        std::string type_str;
        std::vector<npy::ndarray_len_t> stl_shape;
        std::vector<int8_t> raw;
        npy::LoadArrayFromNumpy(path, type_str, stl_shape, raw);

        megdnn::SmallVector<size_t> shape;
        for (auto val : stl_shape) {
            shape.append({static_cast<size_t>(val)});
        }

        const std::map<std::string, megdnn::DType> type_map = {
                {"f4", dtype::Float32()},
                {"i4", dtype::Int32()},
                {"i1", dtype::Int8()},
                {"u1", dtype::Uint8()}};

        megdnn::DType hv_type;
        for (auto& item : type_map) {
            if (type_str.find(item.first) != std::string::npos) {
                hv_type = item.second;
                break;
            }
        }

        HostTensorND hv;
        hv.comp_node(mgb::CompNode::default_cpu(), true)
                .dtype(hv_type)
                .resize(shape);
        dt_byte* raw_ptr = hv.raw_ptr();
        memcpy(raw_ptr, raw.data(), raw.size());

        inputs.insert(std::make_pair(name, std::move(hv)));
    }

    void parse_string(const std::string name, const std::string& str) {
        // data type
        megdnn::DType data_type = dtype::Int32();
        if (str.find(".") != std::string::npos or
            str.find(".") != std::string::npos) {
            data_type = dtype::Float32();
        }
        // shape
        size_t number_cnt = 0;

        std::shared_ptr<Brace> brace_root = std::make_shared<Brace>();
        std::shared_ptr<Brace> cur = brace_root;
        for (size_t i = 0; i < str.size(); ++i) {
            char c = str[i];
            if (c == '[') {
                std::shared_ptr<Brace> child = std::make_shared<Brace>();
                child->parent = cur;
                cur->chidren.emplace_back(child);
                cur = child;
            } else if (c == ']') {
403
                cur = cur->parent.lock();
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
            } else if (c == ',') {
                number_cnt++;
            }
            continue;
        }
        ++number_cnt;

        mgb_assert(cur == brace_root, "braces not closed for --input");
        megdnn::SmallVector<size_t> shape;
        cur = brace_root;
        while (not cur->chidren.empty()) {
            shape.append({cur->chidren.size()});
            number_cnt /= cur->chidren.size();
            cur = cur->chidren[0];
        }
        mgb_assert(number_cnt > 0);
        shape.append({number_cnt});

        // data
        std::string json_arr;
        for (size_t i = 0; i < str.size(); ++i) {
            char c = str[i];
            if (c != '[' and c != ']') {
                json_arr += c;
            }
        }
        json_arr = "[" + json_arr + "]";

        // reuse json parser to resolve raw data
        JsonLoader json;
        std::shared_ptr<JsonLoader::Value> json_root =
                json.load(json_arr.data(), json_arr.size());
        mgb_assert(json_root != nullptr, "parse json fail in parse_string");

        HostTensorND hv;
        hv.comp_node(mgb::CompNode::default_cpu(), true)
                .dtype(data_type)
                .resize(shape);
        dt_byte* raw_ptr = hv.raw_ptr();

        const size_t array_len = json_root->len();
        const size_t elem_size = data_type.size();
        for (size_t idx = 0; idx < array_len; ++idx) {
            double tmp = json_root->array()[idx]->number();
            switch (data_type.enumv()) {
                case megdnn::DTypeEnum::Int32: {
                    int32_t ival = std::round(tmp);
                    memcpy(raw_ptr + idx * elem_size, &ival, elem_size);
                } break;
                case megdnn::DTypeEnum::Float32: {
                    float fval = tmp;
                    memcpy(raw_ptr + idx * elem_size, &fval, elem_size);
                } break;
                default:
                    break;
            }
        }
        inputs.insert(std::make_pair(name, std::move(hv)));
    };
};

465 466 467 468 469 470 471 472 473 474
struct Args {
    int args_parse_ret = 0;

    std::string model_path;

    bool disable_assert_throw = false;
    bool share_param_mem = false;
#if MGB_ENABLE_FASTRUN
    bool use_fast_run = false;
#endif
475
    bool reproducible = false;
476 477 478 479 480 481 482
    std::string fast_run_cache_path;
    bool copy_to_host = false;
    int nr_run = 10;
    int nr_warmup = 1;
    int nr_thread = 1;
    int multithread_number = 1;
    size_t workspace_limit = SIZE_MAX;
483
    std::vector<std::string> data_files;
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
    serialization::GraphLoader::LoadResult load_ret;
#if MGB_ENABLE_JSON
    std::unique_ptr<GraphProfiler> profiler;
#endif
    std::string profiler_output;
    std::string bin_out_dump;

    std::unique_ptr<OprIODumpBase> iodump;
    std::unique_ptr<NumRangeChecker> num_range_checker;
    std::unique_ptr<CPUDispatchChecker> cpu_dispatch_checker;
    std::unique_ptr<VarValueChecker> var_value_checker;
    serialization::GraphLoader::LoadConfig load_config;
    thin_function<void(size_t)> affinity_cb;

    static Args from_argv(int argc, char **argv);
};

uint32_t read_nr_test(serialization::InputFile &fin) {
    char magic[8];
    fin.read(magic, sizeof(magic));
    if (strncmp(magic, "mgbtest0", 8)) {
        fin.rewind();
        return 0;
    }
    uint32_t ret;
    fin.read(&ret, sizeof(ret));
    return ret;
}

size_t get_file_size(FILE *fptr) {
    fseek(fptr, 0, SEEK_END);
    size_t size = ftell(fptr);
    fseek(fptr, 0, SEEK_SET);
    return size;
}

/**
 * \brief dump output tensor.
 *
 * graph would be destructed if comp_node_seq_record_level == 2; so we should
 * store graph info before graph_compile().
 */
class OutputDumper {
    struct DumpInfo {
        HostTensorND hv = {};
        std::string var_info;
        std::string owner_inputs_info;
        size_t id;
    };
    SmallVector<DumpInfo> m_infos;

    size_t m_run_id = 0;
    size_t m_bind_id = 0;
    const Args& m_env;

public:
    OutputDumper(const Args& env) : m_env{env} {
        for (auto&& i : m_env.load_ret.output_var_list) {
            auto&& var = i.node();
            DumpInfo info;
            info.var_info = cg::dump_var_info({var});
            info.owner_inputs_info =
                    cg::dump_var_info(var->owner_opr()->input());
            info.id = var->id();
            m_infos.push_back(info);
        }
    }

    ComputingGraph::Callback bind() {
        auto& info = m_infos.at(m_bind_id++);
        ComputingGraph::Callback cb = [&info](const DeviceTensorND& dv) {
            info.hv.copy_from(dv);
        };
        return cb;
    }

    void write_to_file() {
        if (!m_env.bin_out_dump.empty()) {
            for (auto&& info : m_infos) {
                auto value = debug::dump_tensor(
                        info.hv, ssprintf("var=%s owner_opr_inputs=%s",
                                          info.var_info.c_str(),
                                          info.owner_inputs_info.c_str()));
                debug::write_to_file(
                        ssprintf("%s/run%zu-var%zd", m_env.bin_out_dump.c_str(),
                                 m_run_id, info.id)
                                .c_str(),
                        value);
            }

        }
        m_run_id ++;
    }
};

void run_test_st(Args &env) {
    std::unique_ptr<serialization::InputFile> inp_file;

    if (env.share_param_mem) {
        FILE *fin = fopen(env.model_path.c_str(), "rb");
        mgb_assert(fin, "failed to open %s: %s", env.model_path.c_str(),
                strerror(errno));
        auto size = get_file_size(fin);
        void *ptr = malloc(size);
        std::shared_ptr<void> buf{ptr, free};
        auto nr = fread(buf.get(), 1, size, fin);
        mgb_assert(nr == size);
        fclose(fin);
        inp_file = serialization::InputFile::make_mem_proxy(buf, size);
    } else {
        inp_file = serialization::InputFile::make_fs(
                env.model_path.c_str());
    }
    auto nr_test = read_nr_test(*inp_file);

    auto format =
            serialization::GraphLoader::identify_graph_dump_format(*inp_file);
601 602 603
    mgb_assert(format.valid(),
               "invalid model: unknown model format, please make sure input "
               "file is generated by GraphDumper");
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    auto loader =
            serialization::GraphLoader::make(std::move(inp_file), format.val());
    RealTimer timer;
    env.load_ret = loader->load(env.load_config, false);

    // graph is no longer needed; reset so memory can be reclaimed
    env.load_config.comp_graph.reset();

    printf("load model: %.3fms\n", timer.get_msecs_reset());

    // compile function to compute all outputs
    ComputingGraph::OutputSpec out_spec;
    std::string output_names;

    OutputDumper output_dumper(env);
    for (auto&& i : env.load_ret.output_var_list) {
        if (&i != env.load_ret.output_var_list.data()) {
            output_names += " ";
        }
        output_names.append(i.node()->name() + i.shape().to_string());
        ComputingGraph::Callback cb;
        if (!env.bin_out_dump.empty()) {
            cb = output_dumper.bind();
        } else if (env.copy_to_host) {
            HostTensorND val;
            cb = [val](const DeviceTensorND& dv) mutable {
                val.copy_from(dv);
            };
        }
        out_spec.emplace_back(i, std::move(cb));
    }

    if (env.disable_assert_throw) {
        auto on_opr = [](cg::OperatorNodeBase* opr) {
            if (opr->same_type<opr::AssertEqual>()) {
                opr->cast_final<opr::AssertEqual>().disable_throw_on_error();
            }
        };
        cg::DepOprIter iter{on_opr};
        for (auto&& i : out_spec) {
            iter.add(i.first.node()->owner_opr());
        }
    }

    SymbolVarArray vars;
    for (auto i : out_spec) {
        vars.push_back(i.first);
    }

    mgb::gopt::set_opr_algo_workspace_limit_inplace(vars, env.workspace_limit);
654 655
    using S = opr::mixin::Convolution::ExecutionPolicy::Strategy;
    S strategy = S::HEURISTIC;
656
#if MGB_ENABLE_FASTRUN
657 658 659 660 661 662 663 664 665 666 667 668 669
    if (env.use_fast_run) {
        if (env.reproducible) {
            strategy = S::PROFILE_REPRODUCIBLE;
        } else {
            strategy = S::PROFILE;
        }
    } else if (env.reproducible) {
        strategy = S::HEURISTIC_REPRODUCIBLE;
    }
#else
    if (env.reproducible) {
        strategy = S::HEURISTIC_REPRODUCIBLE;
    }
670
#endif
671
    mgb::gopt::modify_opr_algo_strategy_inplace(vars, strategy);
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
    if (!env.fast_run_cache_path.empty()) {
#if MGB_ENABLE_FASTRUN
        if (!access(env.fast_run_cache_path.c_str(), F_OK)) {
#else
        mgb_assert(access(env.fast_run_cache_path.c_str(), F_OK) == 0,
                   "fast-run cache file can't be accessed");
#endif
            FILE* fin = fopen(env.fast_run_cache_path.c_str(), "rb");
            auto flen = get_file_size(fin);
            std::unique_ptr<uint8_t[]> buf{new uint8_t[flen]};
            size_t ret = fread(buf.get(), flen, 1, fin);
            MGB_MARK_USED_VAR(ret);
            mgb_assert(ret == 1, "read 1 block (got %zu), and block size %zu.",
                       ret, flen);
            fclose(fin);
            PersistentCache::set_impl(
                    std::make_shared<InFilePersistentCache>(buf.get(), flen));
#if MGB_ENABLE_FASTRUN
        } else {
            mgb_assert(env.use_fast_run, "fast-run should be enabled");
            PersistentCache::set_impl(
                    std::make_shared<InFilePersistentCache>());
        }
        if (!env.use_fast_run)
#endif
            mgb::gopt::enable_opr_use_profiling_cache_inplace(vars);
    }

    auto func = env.load_ret.graph_compile(out_spec);
    auto warmup = [&]() {
        printf("=== prepare: %.3fms; going to warmup\n",
               timer.get_msecs_reset());
        for (int run = 0; run < env.nr_warmup; ++run) {
            func->execute().wait();
            printf("warmup %d: %.3fms\n", run, timer.get_msecs_reset());
        }
    };

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
    auto run_iters = [&](uint32_t case_idx) -> float {
        double time_sqrsum = 0, time_sum = 0,
               min_time = std::numeric_limits<double>::max(), max_time = 0;
        for (int run = 0; run < env.nr_run; ++run) {
            mgb_log_debug("load_and_run: before running iter %d", run);
            timer.reset();
            func->execute();
            mgb_log_debug("load_and_run: before waiting iter %d", run);
            auto exec_time = timer.get_msecs();
            func->wait();
            output_dumper.write_to_file();
            auto cur = timer.get_msecs();
            printf("iter %d/%d: %.3fms (exec=%.3f,device=%.3f)\n", run,
                   env.nr_run, cur, exec_time,
                   func->get_prev_exec_time() * 1e3);
            time_sum += cur;
            time_sqrsum += cur * cur;
            fflush(stdout);
            if (cur < min_time) {
                min_time = cur;
            }
            if (cur > max_time) {
                max_time = cur;
            }
        }
        printf("=== finished test #%u: time=%.3fms avg_time=%.3fms "
               "sd=%.3fms minmax=%.3f,%.3f\n\n",
               case_idx, time_sum, time_sum / env.nr_run,
               std::sqrt((time_sqrsum * env.nr_run - time_sum * time_sum) /
                         (env.nr_run * (env.nr_run - 1))),
               min_time, max_time);
        return time_sum;

    };

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
    if (nr_test) {
        // run testcase, generated by dump_with_testcase.py

        std::vector<std::pair<std::string, HostTensorND*>> inp_tensors;
        for (auto &&i: env.load_ret.tensor_map) {
            inp_tensors.emplace_back(i.first, i.second.get());
        }
        std::sort(inp_tensors.begin(), inp_tensors.end());

        printf("=== going to run %u testcases; output vars: %s\n", nr_test,
                output_names.c_str());
        double tot_time = 0;
        for (uint32_t i = 0; i < nr_test; ++ i) {
            loader = serialization::GraphLoader::make(
                    loader->reset_file(), loader->format());
            auto testcase = loader->load(env.load_config, false);
            mgb_assert(testcase.output_var_list.size() == inp_tensors.size());
            for (size_t i = 0; i < inp_tensors.size(); ++ i) {
                auto &&opr = testcase.output_var_list[i].node()->owner_opr()->
                    cast_final_safe<opr::SharedDeviceTensor>();
                inp_tensors[i].second->copy_from(
                        HostTensorND::make_proxy(*opr.dev_data()));
            }

            if (!i) {
                warmup();
            }

            timer.reset();
            printf("=== going to run test #%u for %d times\n", i, env.nr_run);
            if (!env.nr_run) {
                continue;
            }
778
            tot_time += run_iters(i);
779 780 781
        }

        printf("=== total time: %.3fms\n", tot_time);
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
    } else if (not env.data_files.empty()) {
        auto& tensormap = env.load_ret.tensor_map;

        DataParser parser;
        for (auto path : env.data_files) {
            parser.feed(path);
        }
        auto inputs = parser.inputs;
        for (auto& i : inputs) {
            if (tensormap.find(i.first) == tensormap.end()) {
                continue;
            }

            auto& in = tensormap.find(i.first)->second;
            in->copy_from(i.second);
        }

799
        warmup();
800
        timer.reset();
801 802
        printf("=== going to run input for %d times\n", env.nr_run);
        run_iters(0);
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
    } else {
        // run speed test for a raw mgb graph
        mgb_assert(env.load_ret.tensor_map.empty(),
                "model should not require input values; input vars should be "
                "replaced by SharedDeviceTensor "
                "(i.e. megskull.opr.ParamProvider)");

        warmup();
        timer.reset();
        printf("=== going to run for %d times; output vars: %s\n",
                env.nr_run, output_names.c_str());
        for (int i = 0; i < env.nr_run; ++ i) {
            mgb_log_debug("load_and_run: before benchmark iter %d", i);
            auto start = timer.get_msecs();
            func->execute().wait();
            output_dumper.write_to_file();
            printf("=== finished run #%d: time=%.3fms\n", i,
                    timer.get_msecs() - start);
            fflush(stdout);
        }
        printf("avg time: %.3fms\n", timer.get_msecs() / env.nr_run);
    }

#if MGB_ENABLE_JSON
    if (env.profiler) {
        env.profiler->to_json_full(func.get())->writeto_fpath(
                env.profiler_output);
        mgb_log("profiling result written to %s", env.profiler_output.c_str());
    }
#endif
#if MGB_ENABLE_FASTRUN
    if (!env.fast_run_cache_path.empty()) {
        static_cast<InFilePersistentCache&>(PersistentCache::inst())
                .dump_cache(env.fast_run_cache_path.c_str());
    }
#endif
#if MGB_ENABLE_TENSOR_RT
    if (TensorRTEngineCache::enable_engine_cache()) {
        TensorRTEngineCache::inst().dump_cache();
    }
#endif
}

}  // anonymous namespace

int mgb_load_and_run_main(int argc, char** argv) {
    {
        auto v0 = get_version();
        auto v1 = megdnn::get_version();
        printf("mgb load-and-run: using MegBrain "
               "%d.%d.%d(%d) and MegDNN %d.%d.%d\n",
               v0.major, v0.minor, v0.patch, v0.is_dev, v1.major, v1.minor,
               v1.patch);
    }
    auto env = Args::from_argv(argc, argv);

    if (env.args_parse_ret != 0) {
        return env.args_parse_ret;
    }

    if (env.nr_thread == 1) {
        run_test_st(env);
    } else {
#if MGB_HAVE_THREAD
        mgb_log_warn("use %d threads", env.nr_thread);
        std::vector<std::thread> threads;
        auto run = [argc, argv]() {
            auto env = Args::from_argv(argc, argv);
            run_test_st(env);
        };

        for (int i = 0; i < env.nr_thread; ++i) {
            threads.emplace_back(run);
        }

        for (auto&& i : threads) {
            i.join();
        }
#else
        mgb_log_error("%d threads requested, but load-and-run was compiled "
                      "without thread support.");
#endif
    }

    return 0;
}

Args Args::from_argv(int argc, char **argv) {
    Args ret;
    if (argc < 2) {
        printf("usage: %s <model file> [options...]\nWhere options are:%s",
               argv[0], OPTIONS_DESC);
        ret.args_parse_ret = -1;
        return ret;
    }
    set_log_level(LogLevel::WARN);
    ret.model_path = argv[1];
    ret.load_config.comp_graph = ComputingGraph::make();
    auto &&graph_opt = ret.load_config.comp_graph->options();
    graph_opt.graph_opt_level = 0;

    for (int i = 2; i < argc; ++ i) {
        if (!strcmp(argv[i], "--cpu")) {
            mgb_log_warn("use cpu mode");
            ret.load_config.comp_node_mapper = [](CompNode::Locator &loc) {
                loc.type = CompNode::DeviceType::CPU;
            };
            continue;
        }
        if (!strcmp(argv[i], "--cpu-default")) {
            mgb_log_warn("use cpu:default mode");
            ret.load_config.comp_node_mapper = [](CompNode::Locator &loc) {
                loc.type = CompNode::DeviceType::CPU;
                loc.device = CompNode::Locator::DEVICE_CPU_DEFAULT;
            };
            continue;
        }
        if (!strcmp(argv[i], "--multithread")) {
            mgb_log_warn("use multithread mode");
            ++ i;
            ret.multithread_number = std::stoi(argv[i]);
            ret.load_config.comp_node_mapper =
925
                    [nr_threads =
926 927 928
                             ret.multithread_number](CompNode::Locator& loc) {
                        loc.type = CompNode::DeviceType::MULTITHREAD;
                        loc.device = 0;
929
                        loc.stream = nr_threads;
930 931 932 933 934 935 936
                    };
            continue;
        }
        if (!strcmp(argv[i], "--multithread-default")) {
            mgb_log_warn("use multithread:default mode");
            ++i;
            ret.multithread_number = std::stoi(argv[i]);
937 938 939
            ret.load_config.comp_node_mapper = [nr_threads =
                                                        ret.multithread_number](
                                                       CompNode::Locator& loc) {
940 941
                loc.type = CompNode::DeviceType::MULTITHREAD;
                loc.device = CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT;
942
                loc.nr_threads = nr_threads;
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
            };
            continue;
        }
        if (!strcmp(argv[i], "--multi-thread-core-ids")) {
            ++i;
            std::string core_id_string = argv[i];
            std::stringstream input_stringstream(core_id_string);
            std::string id;
            size_t nr_threads = 0;
            std::vector<int> core_ids;
            mgb_log_warn("multi thread core ids: %s", core_id_string.c_str());
            while(getline(input_stringstream, id, ',')) {
                nr_threads++;
                core_ids.push_back(atoi(id.c_str()));
            }
            mgb_assert(ret.multithread_number > 0 &&
                               ret.load_config.comp_node_mapper,
                       "the core id should set behind the --multithread param");
            mgb_assert(static_cast<size_t>(ret.multithread_number) ==
                               core_ids.size(),
                       "the core id should equal to the multi thread number");
            auto affinity_cb = [core_ids](int thread_id) {
                mgb::sys::set_cpu_affinity({core_ids[thread_id]});
            };
            CompNode::Locator loc;
            ret.load_config.comp_node_mapper(loc);
            mgb_assert(loc.type == CompNode::DeviceType::MULTITHREAD,
                       "core id only set on multithread compnode");
            auto cn = CompNode::load(loc);
            CompNodeEnv::from_comp_node(cn).cpu_env().set_affinity(affinity_cb);
            continue;
        }
#if MGB_ENABLE_TENSOR_RT
        if (!strcmp(argv[i], "--tensorrt")) {
            mgb_log_warn("use tensorrt mode");
            graph_opt.graph_opt.tensorrt = true;
            continue;
        }
        if (!strcmp(argv[i], "--tensorrt-cache")) {
            ++i;
            mgb_assert(i < argc, "value not given for --tensorrt-cache");
            char* tensorrt_cache_path = argv[i];
            mgb_log_warn("use tensorrt cache: %s", tensorrt_cache_path);
            TensorRTEngineCache::enable_engine_cache(true);
            TensorRTEngineCache::set_impl(
                    std::make_shared<TensorRTEngineCacheIO>(
                            tensorrt_cache_path));
            continue;
        }
#endif
993 994 995 996 997 998 999 1000

#define cb(_layout)                                       \
    if (!strcmp(argv[i], "--enable-" #_layout)) {         \
        mgb_log_warn("enable " #_layout " optimization"); \
        graph_opt.graph_opt.enable_##_layout();           \
        continue;                                         \
    }

1001
        cb(nchw4);
1002 1003 1004 1005 1006 1007
        cb(chwn4);
        cb(nchw44);
        cb(nchw88);
        cb(nchw32);
        cb(nhwcd4);
#undef cb
1008 1009 1010 1011 1012
        if (!strcmp(argv[i], "--enable-nchw44-dot")) {
            mgb_log_warn("enable-nchw44-dot optimization");
            graph_opt.graph_opt.enable_nchw44_dot();
            continue;
        }
1013 1014 1015 1016 1017 1018 1019 1020
        if (!strcmp(argv[i], "--enable-fuse-conv-bias-nonlinearity")) {
            mgb_log_warn("enable fuse-conv-bias-nonlinearity optimization");
            graph_opt.graph_opt.enable_fuse_conv_bias_nonlinearity();
            continue;
        }
        if (!strcmp(argv[i], "--enable-fuse-conv-bias-with-z")) {
            mgb_log_warn("enable fuse_conv_bias_with_z optimization");
            graph_opt.graph_opt.enable_fuse_conv_bias_with_z();
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
            continue;
        }
#if MGB_ENABLE_JSON
        if (!strcmp(argv[i], "--profile") ||
            !strcmp(argv[i], "--profile-host")) {
            if (!strcmp(argv[i], "--profile")) {
                mgb_log_warn("enable profiling");
            } else {
                mgb_log_warn("enable profiling for host");
            }
            ++i;
            mgb_assert(i < argc, "output file not given for --profile");
            ret.profiler = std::make_unique<GraphProfiler>(
                    ret.load_config.comp_graph.get());
            ret.profiler_output = argv[i];
            continue;
        }
#endif
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
        if (!strcmp(argv[i], "--input")) {
            ++i;
            mgb_assert(i < argc, "input file not given for --input");

            size_t start = 0;
            std::string cmd = argv[i];

            while (true) {
                auto end = cmd.find(";", start);
                if (end == std::string::npos) {
                    ret.data_files.emplace_back(cmd.substr(start));
                    break;
                }
1052
                std::string substr = cmd.substr(start, end - start);
1053 1054 1055 1056 1057
                ret.data_files.emplace_back(substr);
                start = end + 1;
            }
            continue;
        }
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
        if (!strcmp(argv[i], "--io-dump")) {
            mgb_log_warn("enable opr io dump");
            ++ i;
            mgb_assert(i < argc, "output file not given for --io-dump");
            auto iodump = std::make_unique<TextOprIODump>(
                    ret.load_config.comp_graph.get(), argv[i]);
            iodump->print_addr(false);
            ret.iodump = std::move(iodump);
            continue;
        }
        if (!strcmp(argv[i], "--bin-io-dump")) {
            mgb_log_warn("enable opr binary io dump");
            ++ i;
            mgb_assert(i < argc,
                    "output directory not given for --bin-io-dump");
            ret.iodump = std::make_unique<BinaryOprIODump>(
                    ret.load_config.comp_graph.get(), argv[i]);
            continue;
        }
        if (!strcmp(argv[i], "--bin-out-dump")) {
1078
            ++ i;
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
            mgb_assert(i < argc,
                    "output directory not given for --bin-out-dump");
            ret.bin_out_dump = argv[i];
            continue;
        }
        if (!strcmp(argv[i], "--iter")) {
            ++ i;
            mgb_assert(i < argc, "value not given for --iter");
            ret.nr_run = std::stoi(argv[i]);
            mgb_assert(ret.nr_run >= 0);
            continue;
        }
        if (!strcmp(argv[i], "--warmup-iter")) {
            ++ i;
            mgb_assert(i < argc, "value not given for --warmup-iter");
            ret.nr_warmup = std::stoi(argv[i]);
            mgb_assert(ret.nr_warmup >= 0);
            continue;
        }
        if (!strcmp(argv[i], "--range")) {
            ++ i;
            mgb_assert(i < argc, "value not given for --range");
            auto range = std::atof(argv[i]);
            mgb_assert(range > 0);
            ret.num_range_checker = std::make_unique<NumRangeChecker>(
                    ret.load_config.comp_graph.get(), range);
            continue;
        }
        if (!strcmp(argv[i], "--check-dispatch")) {
            ret.cpu_dispatch_checker =
                std::make_unique<CPUDispatchChecker>(
                        ret.load_config.comp_graph.get());
            continue;
        }
        if (!strcmp(argv[i], "--disable-mem-opt")) {
            graph_opt.seq_opt.enable_mem_reuse_alloc = false;
            graph_opt.seq_opt.enable_mem_plan_opt = false;
            continue;
        }
        if (!strcmp(argv[i], "--copy-to-host")) {
            ret.copy_to_host = true;
            continue;
        }
        if (!strcmp(argv[i], "--verbose")) {
            graph_opt.log_level = 2;
            set_log_level(LogLevel::DEBUG);
            continue;
        }
        if (!strcmp(argv[i], "--check-var-value")) {
            ++ i;
            mgb_assert(i < argc, "value not given for --check-var-value");
            std::string arg(argv[i]);
            auto sep = arg.find(':');
            size_t switch_interval, start = 0;
            if (sep != std::string::npos) {
                switch_interval = std::stoul(arg.substr(0, sep));
                start = std::stoul(arg.substr(sep + 1));
            } else {
                switch_interval = std::stoul(arg);
            }
            ret.var_value_checker = std::make_unique<VarValueChecker>(
                    ret.load_config.comp_graph.get(), switch_interval, start);
            continue;
        }
        if (!strcmp(argv[i], "--no-sanity-check")) {
            graph_opt.var_sanity_check_first_run = false;
            continue;
        }
        if (!strcmp(argv[i], "--fake-first")) {
            graph_opt.fake_next_exec = true;
            continue;
        }
        if (!strcmp(argv[i], "--record-comp-seq")) {
            graph_opt.comp_node_seq_record_level = 1;
            continue;
        }
        if (!strcmp(argv[i], "--record-comp-seq2")) {
            graph_opt.comp_node_seq_record_level = 2;
            continue;
        }
#if MGB_ENABLE_FASTRUN
        if (!strcmp(argv[i], "--fast-run")) {
            ret.use_fast_run = true;
            continue;
        }
#endif
        if (!strcmp(argv[i], "--fast-run-algo-policy")) {
            ++i;
            ret.fast_run_cache_path = argv[i];
            continue;
        }
1170 1171 1172 1173
        if (!strcmp(argv[i], "--reproducible")) {
            ret.reproducible = true;
            continue;
        }
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
        if (!strcmp(argv[i], "--const-shape")) {
            ret.load_config.const_var_shape = true;
            continue;
        }
        if (!strcmp(argv[i], "--share-param-mem")) {
            ret.share_param_mem = true;
            continue;
        }
        if (!strcmp(argv[i], "--disable-assert-throw")) {
            ret.disable_assert_throw = true;
            continue;
        }
        if (!strcmp(argv[i], "--workspace-limit")) {
            ++i;
            ret.workspace_limit = std::stoll(argv[i]);
            continue;
        }
#if __linux__ || __unix__
        if (!strcmp(argv[i], "--wait-gdb")) {
            printf("wait for gdb attach (pid=%d): ", getpid());
            getchar();
            continue;
        }
        if (!strcmp(argv[i], "--c-opr-lib")) {
            ++ i;
            mgb_assert(i < argc, "value not given for --c-opr-lib");
            auto handle = dlopen(argv[i], RTLD_LAZY);
            mgb_assert(handle, "failed to open c opr lib %s: %s",
                    argv[i], dlerror());
            const char* entry = "mgb_c_opr_init";
            auto func = dlsym(handle, entry);
            mgb_assert(func, "can not resolve %s: %s", entry, dlerror());
            typedef void (*entry_f_t)(void*);
            reinterpret_cast<entry_f_t>(func)(
                    reinterpret_cast<void*>(
                        &mgb_get_extern_c_opr_api_versioned));
            printf("loaded C opr library: %s\n", argv[i]);
            continue;
        }
#endif
        if (!strcmp(argv[i], "--thread")) {
            ++ i;
            mgb_assert(i < argc, "value not given for --thread");
            ret.nr_thread = std::stoi(argv[i]);
            continue;
        }
        if (!strcmp(argv[i], "--enable-jit")) {
            graph_opt.graph_opt.jit = 1;
            continue;
        }
        if (!strcmp(argv[i], "--winograd-transform")) {
            mgb_log_warn("enable winograd transform");
1226
            graph_opt.graph_opt.weight_winograd_transform = true;
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
            continue;
        }

        fprintf(stderr, "invalid arg: %s\n", argv[i]);
        ret.args_parse_ret = -1;
        return ret;
    }

    return ret;
}

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}