specializations.cpp 19.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
/**
 * \file imperative/src/impl/ops/autogen.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

// FIXME: split this file into separate files for each specialized op

#include "megbrain/imperative/ops/autogen.h"
#include "megbrain/opr/dnn/convolution.h"
#include "megbrain/opr/dnn/adaptive_pooling.h"
#include "megbrain/opr/dnn/fake_quant.h"
#include "megbrain/opr/dnn/pooling.h"
#include "megbrain/opr/dnn/local.h"
#include "megbrain/opr/dnn/roi_align.h"
#include "megbrain/opr/dnn/roi_pooling.h"
#include "megbrain/opr/basic_arith.h"
#include "megbrain/opr/blas.h"
#include "megbrain/opr/imgproc.h"
#include "megbrain/opr/indexing.h"
#include "megbrain/opr/io.h"
#include "megbrain/opr/misc.h"
#include "megbrain/opr/nn_int.h"
#include "megbrain/opr/rand.h"
#include "megbrain/opr/tensor_gen.h"
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/opr/utility.h"

#include "../op_trait.h"

namespace mgb::imperative {

namespace { namespace convolution {
std::shared_ptr<OpDef> make_from_op_node(cg::OperatorNodeBase* node_) {
    auto* node = &node_->cast_final_safe<opr::Convolution>();
    return Convolution::make(node->param(), node->execution_policy());
}

auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& conv = static_cast<const Convolution&>(def);
    return opr::Convolution::make(inputs[0], inputs[1], conv.param(), conv.policy());
}

OP_TRAIT_REG(Convolution, Convolution, opr::Convolution)
    .make_from_op_node(make_from_op_node)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // convolution

namespace { namespace convolution_backward_data {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& conv = static_cast<const ConvolutionBackwardData&>(def);
    cg::OperatorNodeConfig config;
    if (inputs.size() == 2) {
        return opr::ConvolutionBackwardData::make(inputs[0], inputs[1], conv.param(), conv.policy(), config);
    } else {
        mgb_assert(inputs.size() == 3);
        return opr::ConvolutionBackwardData::make(inputs[0], inputs[1], inputs[2], conv.param(), conv.policy(), config);
    }
}

OP_TRAIT_REG(ConvolutionBackwardData, ConvolutionBackwardData)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // convolution_backward_data

namespace { namespace dimshuffle {
std::shared_ptr<OpDef> make_from_op_node(cg::OperatorNodeBase* node_) {
    auto* node = &node_->cast_final_safe<opr::Dimshuffle>();
    std::vector<int> pattern(node->param().pattern_len);
    for (size_t i = 0; i < node->param().pattern_len; ++ i) {
        pattern[i] = node->param().pattern[i];
    }
    return Dimshuffle::make(pattern);
}

auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& ds = static_cast<const Dimshuffle&>(def);
    return opr::Dimshuffle::make(inputs[0], ds.pattern);
}

OP_TRAIT_REG(Dimshuffle, Dimshuffle, opr::Dimshuffle)
    .make_from_op_node(make_from_op_node)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // dimshuffle

namespace { namespace add_axis {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& add_axis = static_cast<const AddAxis&>(def);
    using Desc = opr::AxisAddRemove::AxisDesc;
    std::vector<Desc> param;
    for (auto&& i : add_axis.axis) {
        param.push_back(Desc::make_add(i));
    }
    return opr::AxisAddRemove::make(inputs[0], param);
}

OP_TRAIT_REG(AddAxis, AddAxis)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // add_axis

namespace { namespace remove_axis {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& remove_axis = static_cast<const RemoveAxis&>(def);
    using Desc = opr::AxisAddRemove::AxisDesc;
    std::vector<Desc> param;
    for (auto&& i : remove_axis.axis) {
        param.push_back(Desc::make_remove(i));
    }
    return opr::AxisAddRemove::make(inputs[0], param);
}

OP_TRAIT_REG(RemoveAxis, RemoveAxis)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // remove_axis

namespace { namespace top_k {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& topk = static_cast<const TopK&>(def);
    return opr::TopK::make(inputs[0], inputs[1], topk.param())[0]
            .node()->owner_opr();
}

OP_TRAIT_REG(TopK, TopK)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // top_k

namespace { namespace reduce {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& reduce = static_cast<const Reduce&>(def);
    if (inputs.size() > 1) {
        return opr::Reduce::make(inputs[0], reduce.param(), inputs[1]);
    } else {
        return opr::Reduce::make(inputs[0], reduce.param());
    }
}

161 162 163 164 165 166 167
std::shared_ptr<OpDef> make_from_op_node(cg::OperatorNodeBase* node_) {
    auto* node = &node_->cast_final_safe<opr::Reduce>();
    return Reduce::make(node->param());
}

OP_TRAIT_REG(Reduce, Reduce, opr::Reduce)
    .make_from_op_node(make_from_op_node)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // reduce

namespace { namespace adaptive_pooling {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& pool = static_cast<const AdaptivePooling&>(def);
    return opr::AdaptivePooling::make(inputs[0], inputs[1], pool.param());
}

OP_TRAIT_REG(AdaptivePooling, AdaptivePooling)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // adaptive_pooling

namespace { namespace conv_bias {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& conv = static_cast<const ConvBias&>(def);
    cg::OperatorNodeConfig config{conv.dtype};
    if (inputs.size() == 2) {
        return opr::ConvBias::make(inputs[0], inputs[1], conv.param(), conv.policy(), config);
    } else if (inputs.size() == 3) {
        return opr::ConvBias::make(inputs[0], inputs[1], inputs[2], conv.param(), conv.policy(), config);
    } else if (inputs.size() == 4) {
        return opr::ConvBias::make(inputs[0], inputs[1], inputs[2], inputs[3], conv.param(), conv.policy(), config);
    }
    mgb_assert(0);
}

OP_TRAIT_REG(ConvBias, ConvBias)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // conv_bias

namespace { namespace batch_conv_bias {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& conv = static_cast<const BatchConvBias&>(def);
    cg::OperatorNodeConfig config{conv.dtype};
    if (inputs.size() == 2) {
        return opr::BatchConvBias::make(inputs[0], inputs[1], conv.param(), conv.policy(), config);
    } else if (inputs.size() == 3) {
        return opr::BatchConvBias::make(inputs[0], inputs[1], inputs[2], conv.param(), conv.policy(), config);
    } else if (inputs.size() == 4) {
        return opr::BatchConvBias::make(inputs[0], inputs[1], inputs[2], inputs[3], conv.param(), conv.policy(), config);
    }
    mgb_assert(0);
}

OP_TRAIT_REG(BatchConvBias, BatchConvBias)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // batch_conv_bias

namespace { namespace pooling {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& pool = static_cast<const Pooling&>(def);
    return opr::Pooling::make(inputs[0], pool.param());
}
OP_TRAIT_REG(Pooling, Pooling)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // pooling

namespace { namespace matrix_mul {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& matmul = static_cast<const MatrixMul&>(def);
    mgb_assert(inputs.size() == 2);
    return opr::MatrixMul::make(inputs[0], inputs[1], matmul.param());
}
OP_TRAIT_REG(MatrixMul, MatrixMul)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // matrix_mul

namespace { namespace batched_matrix_mul {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& matmul = static_cast<const BatchedMatrixMul&>(def);
    mgb_assert(inputs.size() == 2);
    return opr::BatchedMatrixMul::make(inputs[0], inputs[1], matmul.param());
}
OP_TRAIT_REG(BatchedMatrixMul, BatchedMatrixMul)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // batched_matrix_mul

namespace { namespace dot {
auto apply_on_var_node(
        const OpDef&,
        const VarNodeArray& inputs) {
    mgb_assert(inputs.size() == 2);
    return opr::Dot::make(inputs[0], inputs[1]);
}
OP_TRAIT_REG(Dot, Dot)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // dot

namespace { namespace argsort {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& argsort = static_cast<const Argsort&>(def);
    return opr::Argsort::make(inputs[0], argsort.param());
}
OP_TRAIT_REG(Argsort, Argsort)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // argsort

namespace { namespace argmax {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& argmax = static_cast<const Argmax&>(def);
    return opr::Argmax::make(inputs[0], argmax.param());
}
OP_TRAIT_REG(Argmax, Argmax)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // argmax

namespace { namespace argmin {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& argmin = static_cast<const Argmin&>(def);
    return opr::Argmin::make(inputs[0], argmin.param());
}
OP_TRAIT_REG(Argmin, Argmin)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // argmin

namespace { namespace warp_perspective {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& warp = static_cast<const WarpPerspective&>(def);
    if (inputs.size() == 3) {
        return opr::WarpPerspective::make(inputs[0], inputs[1], inputs[2], warp.param());
    } else {
        mgb_assert(inputs.size() == 4);
        return opr::WarpPerspective::make(inputs[0], inputs[1], inputs[2], inputs[3], warp.param());
    }
}
OP_TRAIT_REG(WarpPerspective, WarpPerspective)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // warp_perspective

namespace { namespace group_local {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& local = static_cast<const GroupLocal&>(def);
    mgb_assert(inputs.size() == 2);
    return opr::GroupLocal::make(inputs[0], inputs[1], local.param());
}
OP_TRAIT_REG(GroupLocal, GroupLocal)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // group_local

namespace { namespace indexing_one_hot {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& op = static_cast<const IndexingOneHot&>(def);
    mgb_assert(inputs.size() == 2);
    return opr::IndexingOneHot::make(inputs[0], inputs[1], op.param());
}
OP_TRAIT_REG(IndexingOneHot, IndexingOneHot)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // indexing_one_hot

namespace { namespace indexing_set_one_hot {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& op = static_cast<const IndexingSetOneHot&>(def);
    mgb_assert(inputs.size() == 3);
    return opr::IndexingSetOneHot::make(inputs[0], inputs[1], inputs[2], op.param());
}
OP_TRAIT_REG(IndexingSetOneHot, IndexingSetOneHot)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // indexing_set_one_hot

namespace { namespace typecvt {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& op = static_cast<const TypeCvt&>(def);
    mgb_assert(inputs.size() == 1);
    return opr::TypeCvt::make(inputs[0], op.dtype);
}
OP_TRAIT_REG(TypeCvt, TypeCvt)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // typecvt

namespace { namespace concat {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& op = static_cast<const Concat&>(def);
    cg::OperatorNodeConfig config{op.comp_node};
    return opr::Concat::make(inputs, op.axis, config);
}
OP_TRAIT_REG(Concat, Concat)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // concat

namespace { namespace copy {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& op = static_cast<const Copy&>(def);
    mgb_assert(inputs.size() == 1);
    cg::OperatorNodeConfig config{op.comp_node};
    return opr::Copy::make(inputs[0], config);
}
OP_TRAIT_REG(Copy, Copy)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // copy

namespace { namespace identity {
auto apply_on_var_node(
        const OpDef&,
        const VarNodeArray& inputs) {
    mgb_assert(inputs.size() == 1);
    return opr::Identity::make(inputs[0]);
}
OP_TRAIT_REG(Identity, Identity)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // identity

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
namespace { namespace assert_equal {
auto apply_on_var_node(
    const OpDef& def,
    const VarNodeArray& inputs) {
        auto&& op = static_cast<const AssertEqual&>(def);
        mgb_assert(inputs.size() == 2);
        return opr::AssertEqual::make(inputs[0],inputs[1],op.param());

    }
    
OP_TRAIT_REG(AssertEqual, AssertEqual)
    .apply_on_var_node(apply_on_var_node)
    .fallback();

}}

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
namespace { namespace uniform_rng {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& op = static_cast<const UniformRNG&>(def);
    mgb_assert(inputs.size() == 1);
    return opr::UniformRNG::make(inputs[0], op.param());
}
OP_TRAIT_REG(UniformRNG, UniformRNG)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // uniform_rng

namespace { namespace gaussian_rng {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& op = static_cast<const GaussianRNG&>(def);
    mgb_assert(inputs.size() == 1);
    return opr::GaussianRNG::make(inputs[0], op.param());
}
OP_TRAIT_REG(GaussianRNG, GaussianRNG)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // gaussian_rng

namespace { namespace roi_align {
464
VarNodeArray apply_on_var_node(
465 466 467 468
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& op = static_cast<const ROIAlign&>(def);
    mgb_assert(inputs.size() == 2);
469 470
    auto* opr = opr::ROIAlign::make(inputs[0], inputs[1], op.param()).node()->owner_opr();
    return {opr->output(0), opr->output(1)};
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
}
OP_TRAIT_REG(ROIAlign, ROIAlign)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // roi_align

#if MGB_CUDA
namespace { namespace nvof {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& op = static_cast<const NvOf&>(def);
    mgb_assert(inputs.size() == 1);
    return opr::NvOf::make(inputs[0], op.param());
}
OP_TRAIT_REG(NvOf, NvOf)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // nvof
#endif

namespace { namespace linspace {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& op = static_cast<const Linspace&>(def);
    mgb_assert(inputs.size() == 3);
    cg::OperatorNodeConfig config{op.comp_node};
    return opr::Linspace::make(inputs[0], inputs[1], inputs[2], op.param(), config);
}
OP_TRAIT_REG(Linspace, Linspace)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // linspace

namespace { namespace eye {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& op = static_cast<const Eye&>(def);
    mgb_assert(inputs.size() == 1);
    cg::OperatorNodeConfig config{op.comp_node};
    opr::Eye::Param param{op.k, op.dtype.enumv()};
    return opr::Eye::make(inputs[0], param, config);
}
OP_TRAIT_REG(Eye, Eye)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // eye

namespace { namespace roi_pooling {
522
VarNodeArray apply_on_var_node(
523 524 525 526
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& op = static_cast<const ROIPooling&>(def);
    mgb_assert(inputs.size() == 3);
527 528
    auto* opr = opr::ROIPooling::make(inputs[0], inputs[1], inputs[2], op.param()).node()->owner_opr();
    return {opr->output(0), opr->output(1)};
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
}
OP_TRAIT_REG(ROIPooling, ROIPooling)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // roi_pooling

namespace { namespace remap {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& op = static_cast<const Remap&>(def);
    mgb_assert(inputs.size() == 2);
    return opr::Remap::make(inputs[0], inputs[1], op.param());
}
OP_TRAIT_REG(Remap, Remap)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // remap

namespace { namespace reshape {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& op = static_cast<const Reshape&>(def);
    mgb_assert(inputs.size() == 2);
    return opr::Reshape::make(inputs[0], inputs[1], op.param());
}
OP_TRAIT_REG(Reshape, Reshape)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // reshape

namespace {
auto get_index(
    const VarNodeArray& inputs, size_t vidx,
    const std::vector<std::tuple<int8_t, bool, bool, bool, bool>>& mask) {
    size_t length = mask.size();
    opr::Subtensor::IndexDesc ret(length);
    for (size_t i = 0; i < length; ++ i) {
        auto&& [axis, begin, end, step, idx] = mask[i];
        ret[i].axis = axis;
        if (idx) {
            ret[i].idx = inputs[vidx++];
        } else {
            mgb_assert(begin || end || step);
            if (begin) ret[i].begin = inputs[vidx++];
            if (end) ret[i].end = inputs[vidx++];
            if (step) ret[i].step = inputs[vidx++];
        }
    }
    mgb_assert(vidx == inputs.size());
    return ret;
}
#define IN1 inputs[0]
#define IN2 inputs[0], inputs[1]

#define FANCY_INDEXING_IMPL(NAME, NR_INPUT) \
namespace NAME##_impl { \
auto apply_on_var_node( \
        const OpDef& def, \
        const VarNodeArray& inputs) { \
    auto&& op = static_cast<const NAME&>(def); \
    return opr::NAME::make(IN##NR_INPUT, get_index(inputs, NR_INPUT, op.items)); \
} \
OP_TRAIT_REG(NAME, NAME) \
    .apply_on_var_node(apply_on_var_node) \
    .fallback(); \
}

FANCY_INDEXING_IMPL(Subtensor, 1)
FANCY_INDEXING_IMPL(SetSubtensor, 2)
FANCY_INDEXING_IMPL(IncrSubtensor, 2)
FANCY_INDEXING_IMPL(IndexingMultiAxisVec, 1)
FANCY_INDEXING_IMPL(IndexingSetMultiAxisVec, 2)
FANCY_INDEXING_IMPL(IndexingIncrMultiAxisVec, 2)
FANCY_INDEXING_IMPL(MeshIndexing, 1)
FANCY_INDEXING_IMPL(IncrMeshIndexing, 2)
FANCY_INDEXING_IMPL(SetMeshIndexing, 2)
FANCY_INDEXING_IMPL(BatchedMeshIndexing, 1)
FANCY_INDEXING_IMPL(BatchedIncrMeshIndexing, 2)
FANCY_INDEXING_IMPL(BatchedSetMeshIndexing, 2)

#undef FANCY_INDEXING_IMPL
#undef IN1
#undef IN2
} // anonymous namespace

namespace { namespace fake_quant {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& op = static_cast<const FakeQuant&>(def);
    mgb_assert(inputs.size() == 3);
    return opr::FakeQuant::make(inputs[0], inputs[1], inputs[2], op.param());
}
OP_TRAIT_REG(FakeQuant, FakeQuant)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // fake_quant
namespace { namespace elemwise_multi_type {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& op = static_cast<const ElemwiseMultiType&>(def);
    OperatorNodeConfig config{op.dtype};
    return opr::ElemwiseMultiType::make(inputs, op.param(), config);
}
OP_TRAIT_REG(ElemwiseMultiType, ElemwiseMultiType)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // fake_quant

namespace { namespace svd {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& op = static_cast<const SVD&>(def);
    mgb_assert(inputs.size() == 1);
647
    return opr::SVD::make(inputs[0], op.param())[0].node()->owner_opr()->usable_output();
648 649 650 651 652 653
}
OP_TRAIT_REG(SVD, SVD)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // svd

654
} // namespace mgb::imperative