op_def.cpp 6.6 KB
Newer Older
1
/**
M
Megvii Engine Team 已提交
2 3
 * \file imperative/src/impl/op_def.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
4
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6
 *
M
Megvii Engine Team 已提交
7 8 9
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
10 11 12
 */

#include "megbrain/imperative/op_def.h"
13 14 15

#include <sstream>

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include "megbrain/imperative/ops/opr_attr.h"

#include "./op_trait.h"

namespace mgb {
namespace imperative {

std::shared_ptr<OpDef> OpDef::make_from_op_node(
    cg::OperatorNodeBase* node) {
    OpTrait* trait;
    trait = OpTrait::find_by_typeinfo(node->dyn_typeinfo());
    if (!trait) {
        // TODO: register `make_from_op_node` for each OperatorNode
        // instead of forwarding to OprAttr
        trait = OpTrait::find_by_typeinfo(OprAttr::typeinfo());
    }
    mgb_assert(trait);
    return trait->make_from_op_node(node);
}

36 37 38 39 40 41
DispatchMode OpDef::decide_dispatch_mode(
    const OpDef& def,
    const SmallVector<LogicalTensorDesc>& inputs) {
    return def.trait()->decide_dispatch_mode(def, inputs);
}

42 43
SmallVector<TensorPtr> OpDef::apply_on_physical_tensor(
    const OpDef& def,
44 45
    SmallVector<TensorPtr> inputs) {
    return def.trait()->apply_on_physical_tensor(def, std::move(inputs));
46 47
}

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
std::tuple<SmallVector<MemoryDesc>, SmallVector<MemoryDesc>> OpDef::infer_output_mem_desc(
    const OpDef& def,
    const SmallVector<TensorPtr>& inputs_tensors,
    const SmallVector<MemoryDesc>& inputs_mems) {
    return def.trait()->infer_output_mem_desc(def, inputs_tensors, inputs_mems);
}

void OpDef::execute(
    const OpDef& def,
    SmallVector<TensorPtr> inputs,
    SmallVector<TensorPtr> outputs,
    SmallVector<TensorPtr> workspace) {
    def.trait()->execute(def, std::move(inputs), outputs, std::move(workspace));
}

63 64 65 66 67 68 69 70
void OpDef::apply_on_device_tensornd(
    const OpDef& def,
    const SmallVector<DeviceTensorND>& inputs,
    SmallVector<DeviceTensorND>* outputs) {
    def.trait()->apply_on_device_tensornd(def, inputs, outputs);
    return;
}

71
VarNodeArray OpDef::apply_on_var_node(
72 73 74 75 76
    const OpDef& def,
    const VarNodeArray& inputs) {
    return def.trait()->apply_on_var_node(def, inputs);
}

77
std::tuple<SmallVector<LogicalTensorDesc>, bool> OpDef::infer_output_attrs_fallible(
78 79 80 81 82
    const OpDef& def,
    const SmallVector<LogicalTensorDesc>& inputs) {
    return def.trait()->infer_output_attrs_fallible(def, inputs);
}

83
EncodedSubraph OpDef::make_backward_graph(
84 85 86 87
    const OpDef& def,
    const SmallVector<LogicalTensorDesc>& inputs,
    const SmallVector<bool>& input_requires_grad,
    const SmallVector<bool>& output_has_grad) {
88 89 90 91 92 93 94 95
    using BackwardGraphCache = OpMethResultCache<EncodedSubraph, SmallVector<bool>, SmallVector<bool>>;
    thread_local BackwardGraphCache cache;
    decltype(cache)::key_t cache_key{const_cast<OpDef&>(def).shared_from_this(), inputs, {input_requires_grad, output_has_grad}};
    auto iter = cache.find(cache_key);
    if (iter == cache.end()) {
        iter = cache.insert({cache_key, def.trait()->make_backward_graph(def, inputs, input_requires_grad, output_has_grad)}).first;
    }
    return iter->second;
96 97
}

98 99 100 101 102 103
std::vector<std::pair<const char*, std::string>> OpDef::props(
    const OpDef& def) {
    return def.trait()->props(def);
}

std::string OpDef::to_string() const {
104
    std::string builder = trait()->make_name(*this) + "{";
105 106 107 108 109 110 111 112 113
    for (auto&& [name, value]: props(*this)) {
        builder += name;
        builder += ": ";
        builder += value;
        builder += ",";
    }
    return builder + "}";
}

114 115 116 117 118 119 120 121
size_t OpDef::hash() const {
    return trait()->hash(*this);
}

bool OpDef::is_same_st(const Hashable& rhs) const {
    return trait()->is_same_st(*this, static_cast<const OpDef&>(rhs));
}

122 123 124 125 126 127 128 129 130
const OpTrait* OpDef::trait() const {
    if (!m_trait) {
        m_trait = OpTrait::find_by_typeinfo(dyn_typeinfo());
        mgb_throw_if(!m_trait, MegBrainError,
            "can not find op_trait by %s", dyn_typeinfo()->name);
    }
    return m_trait;
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144
const std::string OpDef::scope() const {
    return m_scope;
}

void OpDef::set_scope(const std::string& scope) {
    m_scope = scope;
}

const std::string OpDef::make_name() const {
    if (m_scope.empty())
        return trait()->make_name(*this);
    return m_scope + "." + trait()->make_name(*this);
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
std::string Subgraph::repr() const {
    std::ostringstream buf;
    buf << "(";
    for (size_t i = 0; i < inputs.size(); ++i) {
        if (i > 0) buf << ", ";
        buf << "%" << inputs[i];
    }
    buf << ") => {\n";
    auto fmt_const = [](size_t i, const TensorPtr& t) {
        if (t->shape().ndim == 1 && t->shape()[0] == 1) {
            auto&& v = t->get_value();
            if (v.dtype() == dtype::Float32{}) {
                return std::to_string(*v.ptr<dt_float32>());
            } else if (v.dtype() == dtype::Int32{}) {
                return std::to_string(*v.ptr<int32_t>());
            }
        }
        return std::string("%c") + std::to_string(i);
    };
    std::unordered_map<size_t, std::string> const_reps;
    for (auto&& [i, t] : constants) {
        const_reps.emplace(i, fmt_const(i, t));
    }
    for (auto& [op, ins, outs] : exprs) {
        buf << "  ";
        if (outs.size()) {
            for (size_t i = 0; i < outs.size(); ++i) {
                if (i > 0) buf << ", ";
                buf << "%" << outs[i];
            }
            buf << " = ";
        }
        if (auto* p = op->try_cast_final<OprAttr>()) {
            buf << p->type;
        } else {
180
            buf << op->make_name();
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        }
        for (size_t i : ins) {
            buf << " ";
            auto&& it = const_reps.find(i);
            if (it != const_reps.end()) {
                buf << it->second;
            } else {
                buf << "%" << i;
            }
        }
        buf << "\n";
    }
    buf << "  ";
    if (outputs.size()) {
        for (size_t i = 0; i < outputs.size(); ++i) {
            if (i > 0) buf << ", ";
            buf << "%" << outputs[i];
        }
    } else {
        buf << "()";
    }
    buf << "\n}\n";
    return buf.str();
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
bool Subgraph::is_single() const {
    if (exprs.size() != 1) {
        return false;
    }
    auto& expr = exprs.at(0);
    return expr.inputs == inputs && expr.outputs == outputs;
}

std::shared_ptr<OpDef> Subgraph::as_single() const {
    if (is_single()) {
        return exprs.at(0).op;
    } else {
        return nullptr;
    }
}

bool Subgraph::operator==(const Subgraph& rhs) const {
    mgb_assert(false, "Not Implemented");
}

226 227 228 229
} // namespace imperative
} // namespace mgb

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}