mask_conv.cpp 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/**
 * \file dnn/test/cpu/mask_conv.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "test/cpu/fixture.h"

#include "megdnn/oprs.h"
#include "test/common/benchmarker.h"
#include "test/common/checker.h"
#include "test/common/mask_conv.h"
#include "test/common/rng.h"
#include "test/common/utils.h"

using namespace megdnn;
using namespace test;

TEST_F(CPU, MASK_CONV) {
    mask_conv_test(handle());
}

28
#if MEGDNN_WITH_BENCHMARK
29 30 31
TEST_F(CPU, MASK_CONV_BENCHMARK) {
    mask_conv_benchmark(handle());
}
32
#endif
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

TEST_F(CPU, MASK_PROPAGATE) {
    param::MaskPropagate mask_param;
    auto mask_check = [&](const TensorNDArray& tensors) {
        auto mask_src = tensors[0];
        auto mask_dst = tensors[1];

        auto src_ptr = static_cast<float*>(megdnn_malloc(
                handle(), mask_src.layout.total_nr_elems() * sizeof(float)));
        auto src = TensorND{
                src_ptr,
                TensorLayout{mask_src.layout.reshape({1, 1, mask_src.layout[0],
                                                      mask_src.layout[1]}),
                             dtype::Float32()}};
        for (size_t i = 0; i < src.layout.total_nr_elems(); ++i) {
            src_ptr[i] = static_cast<float>(mask_src.ptr<int>()[i]);
        }

        auto filter_ptr = static_cast<float*>(megdnn_malloc(
                handle(),
                mask_param.kernel_h * mask_param.kernel_w * sizeof(float)));
        auto filter = TensorND{
                static_cast<void*>(filter_ptr),
                TensorLayout{{1, 1, mask_param.kernel_h, mask_param.kernel_w},
                             dtype::Float32()}};
        for (size_t i = 0; i < mask_param.kernel_h * mask_param.kernel_w; ++i) {
            filter_ptr[i] = 1.0;
        }

        TensorLayout dst_layout{dtype::Float32()};

        param::Convolution conv_param{
                param::Convolution::Mode::CROSS_CORRELATION,
                mask_param.pad_h,
                mask_param.pad_w,
                mask_param.stride_h,
                mask_param.stride_w,
                mask_param.dilate_h,
                mask_param.dilate_w};
        auto opr = handle()->create_operator<Convolution>();
        opr->param() = conv_param;
        opr->deduce_layout(src.layout, filter.layout, dst_layout);
        auto dst_ptr = static_cast<float*>(megdnn_malloc(
                handle(), mask_dst.layout.total_nr_elems() * sizeof(float)));
        auto dst = TensorND{dst_ptr, dst_layout};
        WorkspaceWrapper workspace{
                handle(), opr->get_workspace_in_bytes(src.layout, filter.layout,
80 81
                                                      dst.layout, nullptr)};
        opr->exec(src, filter, dst, nullptr, workspace.workspace());
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        for (size_t i = 0; i < dst.layout.total_nr_elems(); ++i) {
            mask_dst.ptr<int>()[i] = dst_ptr[i] > 0;
        }
        delete dst_ptr;
        delete filter_ptr;
        delete src_ptr;
    };

    Checker<MaskPropagate> checker(handle());
    auto rng = std::make_unique<BernoulliRNG>(0.5);
    checker.set_extra_opr_impl(mask_check)
            .set_dtype(0, dtype::Int32())
            .set_rng(0, rng.get());

    auto run = [&](size_t IH, size_t IW, size_t FH, size_t FW, size_t SH = 1,
                   size_t SW = 1, size_t PH = 0, size_t PW = 0, size_t DH = 1,
                   size_t DW = 1) {
        mask_param.kernel_h = FH;
        mask_param.kernel_w = FW;
        mask_param.pad_h = PH;
        mask_param.pad_w = PW;
        mask_param.stride_h = SH;
        mask_param.stride_w = SW;
        mask_param.dilate_h = DH;
        mask_param.dilate_w = DW;
        checker.set_param(mask_param);

        TensorShape src_shape{IH, IW}, dst_shape{};

        checker.execs({src_shape, dst_shape});
    };
    run(5, 5, 3, 2);
    run(5, 5, 2, 3, 2, 2);
    run(5, 5, 3, 3, 2, 2, 1, 2);
    run(5, 5, 3, 3, 2, 1, 1, 2);
    run(5, 5, 3, 3, 1, 2, 2, 2);
    run(24, 23, 4, 4, 1, 1, 3, 2);
    run(24, 23, 4, 4, 1, 1, 3, 2, 2, 2);
    run(24, 23, 4, 4, 1, 1, 3, 2, 2, 3);
    run(24, 23, 4, 4, 1, 1, 3, 2, 3, 3);
}

// vim: syntax=cpp.doxygen