misc.cpp 15.6 KB
Newer Older
1 2 3 4
/**
 * \file src/opr/test/misc.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/opr/misc.h"
#include "megbrain/opr/basic_arith_wrapper.h"
#include "megbrain/opr/blas.h"
#include "megbrain/opr/io.h"
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/opr/utility.h"
#include "megbrain/test/autocheck.h"
#include "megbrain/test/helper.h"
#include "megbrain/test/megdnn_helper.h"

#include <numeric>
#include <random>

using namespace mgb;

namespace {
    void shape_abc(const TensorShape &shape, size_t axis,
            size_t &A, size_t &B, size_t &C) {
        auto acc_mul = [](const size_t *first, const size_t *last) {
            return std::accumulate(
                    first, last, 1u, std::multiplies<size_t>());
        };
        A = acc_mul(shape.shape, shape.shape+axis);
        B = shape.shape[axis];
        C = acc_mul(shape.shape+axis+1, shape.shape+shape.ndim);
    }

    void argsort_data_gen(HostTensorND& dest) {
        mgb_assert(dest.layout().ndim == 2 && dest.layout().is_contiguous());
        size_t m = dest.layout()[0], n = dest.layout()[1];
        auto ptr = dest.ptr<float>();
        RNGxorshf rng{next_rand_seed()};
        std::uniform_real_distribution<float> dist_base{-10.f, 10.f},
                dist_delta{0.1f, 1.2f};
        for (size_t i = 0; i < m; ++i) {
            auto v = dist_base(rng);
            for (size_t j = 0; j < n; ++j) {
                ptr[j] = v;
                v += dist_delta(rng);
            }
            std::shuffle(ptr, ptr + n, rng);
            ptr += n;
        }
    }
}

TEST(TestOprMisc, Argmxx) {
    auto run = [](bool is_max, int32_t axis, TensorShape sshape) {
        auto dshape = sshape;
        dshape.shape[axis] = 1;
        using Checker = AutoOprChecker<1, 1>;
        auto make_graph = [&](const Checker::SymInpArray &inputs) ->
            Checker::SymOutArray {
            if (is_max)
                return {opr::Argmax::make(inputs[0], {axis})};
            else
                return {opr::Argmin::make(inputs[0], {axis})};
        };
        auto better_than = [&](float curr, float best)
        {
            if (is_max)
                return curr > best;
            else
                return curr < best;
        };
        auto fwd = [&](Checker::NumOutArray &out, Checker::NumInpArray inp) {
            out[0].dtype(dtype::Int32()).resize(dshape);
            size_t A, B, C;
            shape_abc(sshape, axis, A, B, C);
            for (size_t a = 0; a < A; ++a) for (size_t c = 0; c < C; ++c) {
                float best_val;
                size_t best_arg = -1;
                if (is_max)
                    best_val = std::numeric_limits<float>::lowest();
                else
                    best_val = std::numeric_limits<float>::max();
                for (size_t b = 0; b < B; ++b) {
                    float curr_val = inp[0]->ptr<float>()[(a*B+b)*C+c];
                    if (better_than(curr_val, best_val)) {
                        best_val = curr_val;
                        best_arg = b;
                    }
                }
                out[0].ptr<int>()[a*C+c] = best_arg;
            }
        };
        Checker{make_graph, fwd}.
            set_input_allow_grad(0, false).
            set_output_allow_grad(0, false).
            run({sshape}).
            run({sshape}).
            run({sshape});
    };
    run(true, 0, {5});
    run(true, 1, {2, 3, 4, 5});
    run(true, 2, {2, 3, 4, 5});
    run(true, 3, {2, 3, 4, 5});
    run(false, 0, {3, 4, 5});
    run(false, 1, {2, 3, 4, 5});
    run(false, 2, {2, 3, 4, 5});
    run(false, 3, {2, 3, 4, 5});
}

TEST(TestOprMisc, Argsort) {
    using Order = opr::Argsort::Param::Order;
    auto run = [](Order order) {
        using Checker = AutoOprChecker<1, 2>;
        auto make_graph = [&](const Checker::SymInpArray& inputs)
                -> Checker::SymOutArray {
            return opr::Argsort::make(inputs[0], order);
        };
        auto fwd = [&](Checker::NumOutArray& out, Checker::NumInpArray inp) {
            size_t m = inp[0]->shape()[0], n = inp[0]->shape()[1];
            auto pi = inp[0]->ptr<float>();
            auto poval = out[0].resize({m, n}).ptr<float>();
            auto poidx = out[1].resize({m, n}).ptr<int>();

            using KV = std::pair<float, int>;
            std::vector<KV> row(n);
            for (size_t i = 0; i < m; ++i) {
                for (size_t j = 0; j < n; ++j) {
                    row[j].first = pi[i * n + j];
                    row[j].second = j;
                }
                if (order == Order::ASCENDING) {
                    std::sort(row.begin(), row.end());
                } else {
                    std::sort(row.begin(), row.end(), std::greater<KV>{});
                }

                for (size_t j = 0; j < n; ++j) {
                    poval[i * n + j] = row[j].first;
                    poidx[i * n + j] = row[j].second;
                }
            }
        };
        Checker::RunOptions opt;
        opt.numdiff_eps = 0.045;
        Checker{make_graph, fwd}
                .set_input_generator(0, argsort_data_gen)
                .set_output_allow_grad(1, false)
                .run({TensorShape{1, 1}}, opt)
                .run({TensorShape{5, 3}}, opt)
                .run({TensorShape{10, 24}}, opt);
    };
    run(Order::ASCENDING);
    run(Order::DESCENDING);
}

TEST(TestOprMisc, Cumsum) {
    using Param = opr::Cumsum::Param;
    auto run = [](const Param &param) {
        using Checker = AutoOprChecker<1, 1>;
        auto make_graph = [&](const Checker::SymInpArray &inputs) ->
            Checker::SymOutArray {
                return {opr::Cumsum::make(inputs[0], param)};
            };
        auto fwd = [&](Checker::NumOutArray &out, Checker::NumInpArray inp) {
            out[0].resize(inp[0]->shape());

            auto pin = inp[0]->ptr<float>(), pout = out[0].ptr<float>();
            size_t A, B, C;
            int real_axis = param.axis;
            if (real_axis < 0) real_axis += 3;
            shape_abc(inp[0]->shape(), real_axis, A, B, C);
            ptrdiff_t stride = C;
            if (param.reverse)
                stride = -stride;
            for (size_t i = 0; i < A; ++ i) {
                for (size_t k = 0; k < C; ++ k) {
                    auto pi = pin + i * B * C + k,
                         po = pout + i * B * C + k;
                    if (param.reverse) {
                        pi += (B - 1) * C;
                        po += (B - 1) * C;
                    }
                    if (param.exclusive) {
                        *po = 0;
                        po += stride;
                    }
                    float sum = 0;
                    for (size_t j = 0; j < B - 1; ++ j) {
                        sum += pi[j * stride];
                        po[j * stride] = sum;
                    }
                    if (!param.exclusive) {
                        po[(B - 1) * stride] = sum + pi[(B - 1) * stride];
                    }
                }
            }
        };
        Checker{make_graph, fwd}.
            run({TensorShape{2, 3, 4}}).
            run({TensorShape{3, 1, 2}}).
            run({TensorShape{4, 2, 3}});
    };

    // test negative axis
    for (int32_t axis = -3; axis < 3; ++axis)
        for (int mask = 0; mask < 4; ++mask)
            run({axis, bool(mask >> 1), bool(mask & 1)});
}

TEST(TestOprMisc, CondTake) {
    using Param = opr::CondTake::Param;
    using Checker = AutoOprChecker<2, 1>;
    auto make_graph = [&](const Checker::SymInpArray &inputs) ->
            Checker::SymOutArray {
        return {opr::CondTake::make(
                inputs[0], inputs[1], {Param::Mode::LT})[0]};
    };

    auto fwd = [&](Checker::NumOutArray &out, Checker::NumInpArray inp) {
        std::vector<float> values;
        auto data = inp[0]->ptr<float>(), mask = inp[1]->ptr<float>();
        auto isize = inp[0]->shape().total_nr_elems();
        for (size_t i = 0; i < isize; ++ i) {
            if (mask[i] < 0) {
                values.push_back(data[i]);
            }
        }
        out[0].resize({values.size()});
        memcpy(out[0].ptr<float>(),
                values.data(), sizeof(float) * values.size());
    };

    auto ensure_nonempty = [](Checker::NumInpArray inp) {
        auto mask = inp[1]->ptr<float>();
        auto isize = inp[1]->shape().total_nr_elems();
        for (size_t i = 0; i < isize; ++ i) {
            if (mask[i] < 0)
                return;
        }
        mask[isize - 1] = -1;
    };

    auto mki = [](const TensorShape &shp) -> Checker::ShapeInpArray {
        return {shp, shp};
    };
    Checker{make_graph, fwd}.
        set_input_allow_grad(1, false).
        set_input_coordinator(ensure_nonempty).
        run(mki({2})).
        run(mki({3, 5, 8})).
        run(mki({100}));
}

259
TEST(TestOprMisc, CondTakeEmptyIO) {
260 261
    using Param = opr::CondTake::Param;
    HostTensorGenerator<> gen;
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    auto check = [&](const TensorShape& shp) {
        auto host_x = gen(shp);
        auto graph = ComputingGraph::make();
        auto x = opr::Host2DeviceCopy::make(*graph, host_x);
        auto y = x + 1;
        auto out = opr::CondTake::make(x, y, {Param::Mode::EQ});
        HostTensorND host_out0, host_out1;
        auto func = graph->compile({make_callback_copy(out[0], host_out0),
                make_callback_copy(out[1], host_out1)});
        func->execute();
        ASSERT_EQ(TensorShape{0}, host_out0.shape());
        ASSERT_EQ(TensorShape{0}, host_out1.shape());
    };
    check({1});
    check({0});
    check({1, 0});
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
}

TEST(TestOprMisc, TopKValueOnly) {
    auto run = [](bool dyn_k, bool non_contig) {
        using Checker = AutoOprChecker<1, 1>;
        std::shared_ptr<HostTensorND> host_k;

        SymbolVar var_x0, var_x1;

        auto make_graph = [&](const Checker::SymInpArray& inputs)
                -> Checker::SymOutArray {
            auto k = opr::Host2DeviceCopy::make(
                    *inputs[0].node()->owner_graph(), host_k);
            if (dyn_k) {
                k = opr::MarkDynamicVar::make(k);
            }
            auto x = inputs[0];
            if (non_contig) {
                var_x0 = x;
                x = opr::Subtensor::make(
                        x, {opr::Subtensor::AxisIndexer::make_interval(
                                   1, None, opr::GetVarShape::make(x, 1) / 2,
                                   None)});
                var_x1 = x;
            }
            auto outs = opr::TopK::make(x, k, opr::TopK::Param::Mode::KTH_ONLY);
            return {outs[0]};
        };
        auto fwd = [&](Checker::NumOutArray& out, Checker::NumInpArray inp) {
            auto opr = megdnn_naive_handle()->create_operator<megdnn::TopK>();
            int k = host_k->ptr<int>()[0];
            HostTensorND x = *inp[0];
            if (non_contig) {
                auto layout = x.layout();
                layout.shape[1] /= 2;
                x = x.sub(SubTensorSpec::make_from_layout(layout));
            }

            TensorLayout outl0, outl1;
            opr->deduce_layout(k, x.layout(), outl0, outl1);

            size_t wk_size =
                    opr->get_workspace_in_bytes(k, x.layout(), outl0, outl1);
            std::unique_ptr<dt_byte[]> wk_store{new dt_byte[wk_size]};
            opr->exec(k, x.as_megdnn(), out[0].resize(outl0).as_megdnn(), {},
                      {wk_store.get(), wk_size});
        };
        Checker checker{make_graph, fwd};
        checker.set_input_generator(0, argsort_data_gen);

        host_k = std::make_shared<HostTensorND>(checker.comp_node(),
                                                TensorShape{1}, dtype::Int32{});
        host_k->ptr<int>()[0] = 1;
        Checker::RunOptions opt;
        opt.numdiff_eps = 0.047;
        auto invoke = [&](int k, size_t m, size_t n) {

            host_k->ptr<int>()[0] = k;
            checker.run({TensorShape{m, n}}, opt);
        };

        if (!non_contig) {
            invoke(1, 1, 1);
        }
        invoke(-2, 3, 2);
        invoke(-1, 4, 5);
        invoke(3, 10, 33);
        invoke(-8, 23, 35);

        if (non_contig) {
            ASSERT_EQ(prev_dev_ptr(var_x0), prev_dev_ptr(var_x1));
        }
    };

    for (auto i : {false, true}) {
        for (auto j : {false, true}) {
            run(i, j);
        }
    }
}

TEST(TestOprMisc, TopKSorted) {
    using Checker = AutoOprChecker<1, 2>;
    std::shared_ptr<HostTensorND> host_k;
    auto constexpr mode = opr::TopK::Param::Mode::VALUE_IDX_SORTED;

    auto make_graph =
            [&](const Checker::SymInpArray& inputs) -> Checker::SymOutArray {
        auto k = opr::Host2DeviceCopy::make(*inputs[0].node()->owner_graph(),
                                            host_k);
        auto x = inputs[0];
        return opr::TopK::make(x, k, mode);
    };
    auto fwd = [&](Checker::NumOutArray& out, Checker::NumInpArray inp) {
        auto opr = megdnn_naive_handle()->create_operator<megdnn::TopK>();
        opr->param().mode = mode;
        int k = host_k->ptr<int>()[0];
        TensorLayout outl0, outl1;
        opr->deduce_layout(k, inp[0]->layout(), outl0, outl1);

        size_t wk_size =
                opr->get_workspace_in_bytes(k, inp[0]->layout(), outl0, outl1);
        std::unique_ptr<dt_byte[]> wk_store{new dt_byte[wk_size]};
        opr->exec(k, inp[0]->as_megdnn(), out[0].resize(outl0).as_megdnn(),
                  out[1].resize(outl1).as_megdnn(), {wk_store.get(), wk_size});
    };
    Checker checker{make_graph, fwd};
    checker.set_input_generator(0, argsort_data_gen)
            .set_output_allow_grad(1, false);

    host_k = std::make_shared<HostTensorND>(checker.comp_node(), TensorShape{1},
                                            dtype::Int32{});
    host_k->ptr<int>()[0] = 1;
    Checker::RunOptions opt;
    opt.numdiff_eps = 0.047;
    auto invoke = [&](int k, size_t m, size_t n) {

        host_k->ptr<int>()[0] = k;
        checker.run({TensorShape{m, n}}, opt);
    };

    invoke(1, 1, 1);
    invoke(-1, 3, 5);
    invoke(5, 13, 23);
    invoke(-8, 35, 4);
}

TEST(TestOprMisc, TopKSortedIdxOnly) {
    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    std::shared_ptr<HostTensorND> host_x = gen({2, 5});
    std::shared_ptr<HostTensorND> host_y = gen({2, 5});
    for (size_t i = 0; i < 10; ++i) {
        host_y->ptr<float>()[i] = 0.0f;
    }
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         idx = opr::TopK::make(x, x.make_scalar(3),
                               opr::TopK::Param::Mode::VALUE_IDX_SORTED)[1],
         y = opr::TypeCvt::make(idx, dtype::Float32{}),
         gx = cg::grad(opr::reduce_sum(y, y.make_scalar(1)), x);
    HostTensorND host_gx;
    auto func = graph->compile({make_callback_copy(gx, host_gx)});
    func->execute();
    MGB_ASSERT_TENSOR_EQ(host_gx, *host_y);
}

M
Megvii Engine Team 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
TEST(TestOprMisc, TopKGrad) {
    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    std::shared_ptr<HostTensorND> host_x = gen({2, 5});
    std::shared_ptr<HostTensorND> host_k = gen({1});
    host_k->ptr<float>()[0] = 3;
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         k = opr::Host2DeviceCopy::make(*graph, host_k),
         ki = opr::TypeCvt::make(k, dtype::Int32{}),
         val = opr::TopK::make(x, ki,
                               opr::TopK::Param::Mode::VALUE_IDX_SORTED)[0],
         gk = cg::grad(opr::reduce_sum(val, val.make_scalar(1)), ki, true, false);
    EXPECT_TRUE(gk == nullptr);
}

439
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}