cg.h 19.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/**
 * \file src/core/include/megbrain/graph/cg.h
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#pragma once

#include "megbrain/graph/operator_node.h"
#include "megbrain/graph/symbol_var.h"
#include "megbrain/graph/static_infer.h"
#include "megbrain/graph/seq_comp_node_opt.h"
#include "megbrain/utils/event.h"
19
#include "megbrain/system.h"
20

21 22 23 24
#if MGB_ENABLE_JSON
#include "megbrain/utils/json.h"
#endif

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
namespace mgb {
namespace cg {

/*!
 * \brief allocation strategy for device storage in computing graphs
 *
 * Note: all the \p graph params would be NULL for requests originating from
 * ComputingGraph::prealloc_static_storage. Otherwise they are not NULL.
 *
 * This base class already provides an implementation using memory management on
 * the comp node. Sub-classes can override only the methods of interest.
 */
class DeviceMemoryAllocator {
public:
    //! a version sentinel value that should never be returned by
    //! static_alloc_version()
    static constexpr size_t VERSION_INVALID = ~static_cast<size_t>(0);

    virtual ~DeviceMemoryAllocator() = default;

    /*!
     * \brief implement the allocation strategy for static graph-wise storage
     * \param[in] graph the computing graph that requests the memory
     * \param[out] dest output tensor storage; its comp node has been
     *      initialized to target comp node
     */
    virtual void alloc_static(ComputingGraph* graph, DeviceTensorStorage& dest,
                              size_t size);

    /*!
     * \brief implement the allocation strategy for dynamic storage of a
     *      variable
     * \param[in] var the variable that needs memory
     *
     * Note: if allocation fails, MemAllocError should be raised so
     * VarDevMemDefragmenter can catch the error and do defragmentation.
     */
    virtual void alloc_dynamic(VarNode* var, DeviceTensorStorage& dest,
                               size_t size);

    /*!
     * \brief Ensure a contiguous storage for memory defragmenter
     *
     * When doing memory-defragmentation, it is useful to ensure that following
     * allocation requests can be placed in a contiguous storage. This function
     * would be called before calling alloc_dynamic() on the individual vars.
     */
    virtual void defrag_prealloc_contig(ComputingGraph* graph,
                                        CompNode comp_node, size_t size);

    /*!
     * \brief version of static allocation strategy
     *
     * If version changes before graph exec, static memory would be reallocated.
     * This function would be only called once in each graph execution.
     */
    virtual size_t static_alloc_version(ComputingGraph* graph) const;
};

/*!
 * \brief Computing graph.
 *
 * A computing graph manages operators and variables. It can be compiled to
 * create an AsyncExecutable that computs given variables.
 */
class ComputingGraph : public std::enable_shared_from_this<ComputingGraph>,
                       public CompNodeDepedentObject {
    public:
        ComputingGraph();
        virtual ~ComputingGraph() = default;

        /*!
         * \brief graph ID
         *
         * Each graph would be assigned a unique increasing ID; useful for
         * debugging
         */
        size_t id() const {
            return m_id;
        }

        static std::shared_ptr<ComputingGraph> make();

        //! assert that refcnt for ptr is one and destories the ptr
        static void assert_destroy(std::shared_ptr<ComputingGraph>& ptr);

        /*!
         * \brief callback to be invoked when some output is ready
         *
         * note that the output may be deallocated after the call returns if no
         * further node depends on the output
         */
        using Callback = thin_function<void(DeviceTensorND&)>;

        //! specify the callback of one output var
        using OutputSpecItem = std::pair<SymbolVar, Callback>;

        /*!
         * specified what ouptputs are required in compile(); the callback could
         * be empty, to ensure that the var is computed
         */
        using OutputSpec = std::vector<OutputSpecItem>;

        /*!
         * \brief information on how a var is needed by others
         */
        struct VarReceiverInfo;

        /*!
         * \brief generate an executable object that when executed, would call
         *      the callbacks on the output values
         *
         * Also note that only the most recent compiled function could be used,
         * since oprs may have internal state
         */
        virtual std::unique_ptr<AsyncExecutable> compile(
                const OutputSpec &out_spec) = 0;

        /*!
         * \brief compile multiple graph parts for partial execution
         *
         * The parts in \p out_specs correspond to the execution steps of this
         * graph. The returned AsyncExecutable objects should be called in the
         * same order of parts given here.
         *
         * The created AsyncExecutable objects would belong to newly generated
         * graphs (not this graph). So functions compiled by compile() and
         * compile_multi_part() can co-exist. All the new graphs would share
         * device memory with this graph.
         */
        virtual SmallVector<std::unique_ptr<AsyncExecutable>>
        compile_multi_part(const SmallVector<OutputSpec>& out_specs) = 0;

        /*!
         * \brief insert a new operator node; its input must exist in current
         *      graph
         * \return the node in the graph (maybe another node due to
         *      deduplication)
         */
        virtual OperatorNodeBase* insert_opr(
                std::unique_ptr<OperatorNodeBase> opr) = 0;

        /*!
         * \brief get current computing sequence
         */
        virtual AsyncExecutable* current_comp_seq() = 0;

        /*!
         * \brief get information on how a variable is needed in current comp
         *      seq
         */
        virtual const VarReceiverInfo& var_receiver_in_current_comp_seq(
                const VarNode *var) const = 0;

179
        virtual std::string get_mem_allocation_info() const = 0;
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        /*!
         * \brief find var node by its ID
         *
         * Note: this searches recursively in subgraphs, and its complexity is
         * linear with respect to number of vars (there is no indexing on var
         * node ID)
         *
         * \return VarNode pointer if it is found, or nullptr if no var is
         *      found to have equal ID
         */
        virtual VarNode* find_var_by_id(size_t id) const = 0;

        /*!
         * \brief get underlying event connector
         */
        SyncEventConnecter& event() {
            return m_event;
        }

        const SyncEventConnecter& event() const {
            return m_event;
        }

        struct Options {
            //! attribute for a specific operator
            struct OprAttribute {
#if MGB_ENABLE_SUBLINEAR
                /*!
                 * if any opr is in this set, then the split of blocks can only
                 * happen on those oprs.
                 */
                ThinHashSet<OperatorNodeBase*>
                    sublinear_memory_endpoint;

                bool get_sublinear_memory_endpoint(OperatorNodeBase *opr) const
                { return sublinear_memory_endpoint.count(opr); }
#endif
            } opr_attribute;

            //! sequence compile optimization options
            struct SeqOpt {
                //! whether to enable memory forwarding to optimize mem plans
                bool enable_mem_plan_opt = true;

                //! whether to enable static memory reuse (i.e. using optimized
                //! static memory allocation algorithm)
                bool enable_mem_reuse_alloc = true;

                //! whether to enable comp node optimization (e.g. using copy
                //! stream for I/O operators)
                bool enable_seq_comp_node_opt = true;
            } seq_opt;

            //! graph optimization options
            struct GraphOpt {
                //! whether to enable JIT; JIT would also be enabled at O3
                //! this value indicates JIT level: 1 for basic elemwise opr; 2
                //! for including reduce oprs
                uint8_t jit = 0;
                //! whether to enable fine-grained TensorRT opr replace
                bool tensorrt = false;
                //! whether to enable fast-run profiled winograd opr replace
                bool winograd_transform = false;
                //! whether to enable nchw4->chwn4 opr replace
                bool enable_chwn4 = false;
            } graph_opt;

            //! get attribute for an operator
            inline const OprAttribute& get_opr_attribute(
                    OperatorNodeBase *opr) const;

            /*!
             * graph optimization level:
             * 0: disable
             * 1: level-1: inplace arith transformations during graph
             *    construction
             * 2: level-2: level-1, plus global optimization before graph
             *    compiling
             * 3: also enable JIT
             * <0: corresponding level, with result check for debug
             */
            int16_t graph_opt_level = 2;

            /*!
             * set logging level, larger number means more verbose
             * 0: no log info
             * 1: static memory allocation status
             *    WorkspaceLimitGetter summary
             *    optimizer summary
             * 2. optimizer var replace details during graph compiling
             *    duplicated operator
             */
            uint16_t log_level = 1;

            /*!
             * async exec: dispatch on separate threads for different comp_node
             * 0: do not perform async dispatch
             * 1: dispatch async if there are more than one comp node with
             *    limited queue
             * mask 0b10: async if there are multiple comp nodes with
             * mask 0b100: always async
             */
            uint16_t async_exec_level = 1;

            //! force dynamic memory alloc for all vars
            bool force_dynamic_alloc = false;

            //! whether to perform var sanity check on first run
            bool var_sanity_check_first_run = true;

            //! whether to allocate static memory just after compiling graph
            bool allocate_static_mem_after_graph_compile = false;

            /*!
             * whether only to perform non-computing tasks (like memory
             * allocation and queue initialization) for next exec. This would be
             * reset to false when the graph is executed.
             */
            bool fake_next_exec = false;

            //! whether to enable sublinear memory optimization
            bool enable_sublinear_memory_opt = false;

304 305 306 307 308 309 310 311 312
            //! Control parameter for sublinear memory optimization
            struct SublinearMemConfig {
                int thresh_nr_try = 10;
                int genetic_nr_iter = 0;
                int genetic_pool_size = 20;
                int lb_memory = 0;
                int num_worker = sys::get_cpu_count() / 2;
            } sublinear_mem_cofig;

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
            //! do not re-profile to select best impl algo when input shape
            //! changes (use previous algo)
            bool no_profiling_on_shape_change = false;

            //! whether to perform defragmenting when memory allocation for a
            //! dynamic var fails
            bool enable_var_mem_defragment = true;

            //! whether to reshape grad var whose wrt shape is statically
            //! inferrable but its own shape is dynamic
            bool enable_grad_var_static_reshape = false;

            /*!
             * whether to enable swap memory
             * as swap's performance is greatly worse than sublinear,
             * it is recommended to use sublinear first
             */
            bool enable_memory_swap = false;

            /*!
             * whether to use CompNodeSeqRecorder to record the execution
             * sequence and directly replay it for later executions.
             *
             * Level 1 is mainly used to speed up execution (especially for
             * opencl); level 2 is used for reducing memory usage.
             *
             * Level 1 constraints:
             *  1. All vars must be statically allocated
             *  2. Host input/output buffer pointers can not be changed if shape
             *     is not changed (this is not checked in execution for
             *     efficiency considerations; this is potentially dangerous)
             *  3. Synchronization can only occur at the end of execution
             *  4. Not all comp node implementations support recording computing
             *     sequence
             *  5. Only one comp node can be used in the graph
             *
             * Level 2: besides recording the computing sequence, the
             * dependencies are also moved into the compiled func (see
             * GraphExecutable::ExecDependency). Additional constraints:
             *  1. Shapes can not change
             *  2. both fake_next_exec and var_sanity_check_first_run must be
             *     disabled
             *  3. Var shapes must be correctly setup before calling compile()
             */
            uint8_t comp_node_seq_record_level = 0;

#if !MGB_BUILD_SLIM_SERVING
            //! whether to evaulate var node values as they are inserted
            bool eager_evaluation = false;
#endif

            //! add extra deps for the comp seq if a specific var is dependent
            ThinHashMap<VarNode*, VarNodeArray> extra_vardeps;

            //! contains any user data associated with this graph
            UserDataContainer user_data;
        }; // Options

        Options& options() {
            return m_options;
        }

        const Options& options() const {
            return m_options;
        }

        /*!
         * \brief get an instance for static var value infer manager
         */
        virtual static_infer::StaticInferManager& static_infer_manager() = 0;

        /*!
         * \brief get an instance for sequence computing node optimizer
         */
        virtual SeqCompNodeOptimizer& seq_comp_node_optimizer() = 0;

        /*!
         * \brief share static device memory with another computing graph
         *
         * To share memory for all graphs g[0..n-1], the correct way is to call
         * g[i].share_device_memory_with(g[0]) for i in range(1, n).
         *
         * This method must be called before compiling, and the user must ensure
         * AsyncExecutable objects with shared static device memory would not be
         * executed simultaneously.
         */
        virtual void share_device_memory_with(ComputingGraph &other) = 0;

        /*!
         * \brief set a custom DeviceMemoryAllocator to be used
         *
         * The given allocator would be used allocation in all graphs involved
         * in share_device_memory_with() calls related to this graph.
         */
        virtual void set_device_memory_allocator(
                std::shared_ptr<DeviceMemoryAllocator> allocator) = 0;

        /*!
         * \brief get size of currently allocated static device memory buffer on
         *      given computing node
         * \return memory size in bytes
         */
        virtual size_t get_device_memory_size(CompNode cn) = 0;

        /*!
         * \brief clear statically allocated device memory
         * \return use count of device memory before clear; a value of 1
         *      indicates the memory would be actually released
         */
        virtual size_t clear_device_memory() = 0;

        /*!
         * \brief set this graph as subgraph of another
         *
         * This mechanism is used to implement special control operators like
         * loop. Being a subgraph has following consequences:
         *   1. node ID counter would be shared
         *   2. when an AsyncExecutable compiled from subgraph are called, it
         *      would not wait for previous run to finish; instead, when
         *      AsyncExecutable from parent graph is being waited, it would call
         *      wait() on AsyncExecutables from the subgraph.
         *   3. some options would be passed from parent graph to sub graph
         *
         * Note that reference to subgraph should be kept by its owner
         * operator, whose reference is kept by parent graph.
         */
        virtual void set_as_subgraph(ComputingGraph &par_graph) = 0;

        //! get number of operators inserted in this graph
        virtual size_t nr_oprs_in_graph() const = 0;

#if !MGB_THREAD_SAFE
        /*!
         * \brief pre-allocate static storage used for internal states of
         *      computing graphs
         *
         * This is mainly used to reduce memory usage in single-threaded
         * environments. If a newly compiled function requires larger memory
         * size than previous ones, megbrain has to re-allocate static storage
         * buffer and the previous buffers are all wasted (because they should
         * have been shared with the largest buffer).
         *
         * If we know the max buffer size for all functions, the buffer can be
         * pre-allocated so it can be shared by all.
         *
         * A common practice to call prealloc_static_storage(0) to get the
         * current buffer size at the end of the program, and use this value as
         * the buffer size in next run.
         *
         * \param size anticipated max size of all buffers, in bytes
         * \return current buffer size
         */
        static size_t prealloc_static_storage(size_t size);
#endif

        /*!
         * \brief record given async error; it should call this function
         * rather than throw exception directly for the errors occurred
         * during calculation.
         */
        virtual void record_async_error(
                std::unique_ptr<MegBrainError> async_exc) = 0;

    private:
        SyncEventConnecter m_event;
        Options m_options;
        size_t m_id;
};

struct ComputingGraph::VarReceiverInfo {
    //! number of requests for directly computing by passing an empty callback
    size_t nr_direct_comp_req = 0;

    //! number of operators that need device value of this var
    size_t dev_value = 0;

    //! last dev value reader in the computing sequence
    OperatorNodeBase* last_dev_value_reader = nullptr;

    //! number of operators that need shape of this var, which can not be
    //! statically inferred
    size_t shape = 0;

    //! number of operators that need host value of this var, which can not be
    //! statically inferred
    size_t host_value = 0;

    //! number of operators in \p dev_value and \p host_value that allow this
    //! var to be empty
    size_t allow_empty_value = 0;

    //! whether nothing is needed completely
    bool empty() const {
        return !nr_direct_comp_req && !dev_value && !shape && !host_value;
    }

    //! whether computing value is needed (i.e. either dev_value, or shape, or
    //! host_value)
    bool value_needed() const {
        return dev_value || shape || host_value;
    }

    //! whether this var can be empty
    bool is_empty_allowed() const {
        return allow_empty_value == host_value + dev_value;
    }

    std::string to_string() const;
};

/*!
 * \brief helper function for creating an operator with unique output and
 *      inserting it into graph
 */
template<typename Node, typename ...Args>
SymbolVar SymbolVar::insert_single_output_opr(Args &&...args) const {
    return m_node->owner_graph()->insert_opr(
            std::make_unique<Node>(std::forward<Args>(args)...))->output(0);
}

} // namespace cg
} // namespace mgb


// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}