general_norm.cpp 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#include "megbrain/opr/dnn/general_norm.h"

#include "megbrain/graph/grad_impl.h"
#include "megbrain/opr/internal/out_shape_by_sym_var.h"
#include "megbrain/opr/utility.h"

#include "../internal/megdnn_opr_wrapper.inl"

using namespace mgb;
using namespace opr;

/* ==================== GeneralNormForward  ==================== */
MGB_DYN_TYPE_OBJ_FINAL_IMPL(GeneralNormForward);

GeneralNormForward::GeneralNormForward(
        VarNode* data, VarNode* weight, VarNode* bias, const Param& param,
        const OperatorNodeConfig& config)
        : Super{data->owner_graph(), config, "general_norm", {data, weight, bias}} {
    init_megdnn_opr(*this, param);

    add_input({data, weight, bias});
    output(0)->dtype(data->dtype());
    output(1)->dtype(dtype::Float32());
    output(2)->dtype(dtype::Float32());
}

GeneralNormForward::GeneralNormForward(
        VarNode* data, const Param& param, const OperatorNodeConfig& config)
        : Super{data->owner_graph(), config, "general_norm", {data}} {
    init_megdnn_opr(*this, param);

    add_input({data});
    output(0)->dtype(data->dtype());
    output(1)->dtype(dtype::Float32());
    output(2)->dtype(dtype::Float32());
}

SymbolVarArray GeneralNormForward::make(
        SymbolVar data, SymbolVar weight, SymbolVar bias, const Param& param,
        const OperatorNodeConfig& config) {
    auto outs = data.node()
                        ->owner_graph()
                        ->insert_opr(std::make_unique<GeneralNormForward>(
                                data.node(), weight.node(), bias.node(), param, config))
                        ->output();
    SymbolVarArray ret;
    for (auto&& out : outs) {
        ret.emplace_back(out);
    }
    return ret;
}

SymbolVarArray GeneralNormForward::make(
        SymbolVar data, const Param& param, const OperatorNodeConfig& config) {
    auto outs = data.node()
                        ->owner_graph()
                        ->insert_opr(std::make_unique<GeneralNormForward>(
                                data.node(), param, config))
                        ->output();
    SymbolVarArray ret;
    for (auto&& out : outs) {
        ret.emplace_back(out);
    }
    return ret;
}

void GeneralNormForward::get_output_var_shape(
        const TensorShapeArray& inp_shape, TensorShapeArray& out_shape) const {
    out_shape[0] = inp_shape[0];
70 71 72 73 74 75 76 77 78 79 80 81
    TensorShape unnormalized_shape{1};

    size_t normalized_axis_start = param().axis_start;
    size_t normalized_axis_end = param().axis_end;
    size_t idx = 0;
    for (size_t i = 0; i < normalized_axis_start; i++)
        unnormalized_shape[idx++] = inp_shape[0][i];
    for (size_t i = normalized_axis_end; i < inp_shape[0].ndim; i++)
        unnormalized_shape[idx++] = inp_shape[0][i];

    unnormalized_shape.ndim = idx == 0 ? 1 : idx;

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    out_shape[1] = unnormalized_shape;
    out_shape[2] = unnormalized_shape;
}

size_t GeneralNormForward::get_workspace_size_bytes(
        const TensorShapeArray& input_shapes,
        const TensorShapeArray& output_shapes) const {
    return 0;
}

void GeneralNormForward::scn_do_execute() {
    if (param().affine) {
        megdnn_opr()->exec(
                input(0)->dev_tensor().as_megdnn(), input(1)->dev_tensor().as_megdnn(),
                input(2)->dev_tensor().as_megdnn(), output(0)->dev_tensor().as_megdnn(),
                output(1)->dev_tensor().as_megdnn(),
                output(2)->dev_tensor().as_megdnn(), {});
    } else {
        megdnn_opr()->exec(
                input(0)->dev_tensor().as_megdnn(), {}, {},
                output(0)->dev_tensor().as_megdnn(),
                output(1)->dev_tensor().as_megdnn(),
                output(2)->dev_tensor().as_megdnn(), {});
    }
}

#if MGB_ENABLE_GRAD
MGB_IMPL_OPR_GRAD(GeneralNormForward) {
    auto p = opr.param();
    SymbolVarArray grad;
    VarNodeArray ret;
    if (p.affine) {
        mgb_assert(wrt_idx < 3, "wrt_idx %zu is out of range", wrt_idx);
        grad = GeneralNormBackward::make(
                out_grad[0], opr.input(0), opr.input(1), opr.output(1), opr.output(2),
                opr.param());
    } else {
        mgb_assert(wrt_idx < 1, "wrt_idx %zu is out of range", wrt_idx);
        grad = GeneralNormBackward::make(
                out_grad[0], opr.input(0), opr.output(1), opr.output(2), opr.param());
    }

    uint32_t nr_ret = p.affine ? 3 : 1;
    for (uint32_t i = 0; i < nr_ret; ++i) {
        ret.push_back(grad[i].node());
    }
    return ret;
}
#endif

/* ==================== GeneralNormBackward ==================== */
MGB_DYN_TYPE_OBJ_FINAL_IMPL(GeneralNormBackward);

GeneralNormBackward::GeneralNormBackward(
        VarNode* diff, VarNode* data, VarNode* weight, VarNode* mean, VarNode* rstd,
        const Param& param, const OperatorNodeConfig& config)
        : Super({diff->owner_graph(),
                 config,
                 "general_norm_backward",
                 {diff, data, weight, mean, rstd}},
                0, true) {
    init_megdnn_opr(*this, param);
    add_input({diff, data, weight, mean, rstd});
}

GeneralNormBackward::GeneralNormBackward(
        VarNode* diff, VarNode* data, VarNode* mean, VarNode* rstd, const Param& param,
        const OperatorNodeConfig& config)
        : Super({diff->owner_graph(),
                 config,
                 "general_norm_backward",
                 {diff, data, mean, rstd}},
                0, true) {
    init_megdnn_opr(*this, param);
    add_input({diff, data, mean, rstd});
    auto mark_empty_var = [&](VarNode* var) {
        var->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE)
                .add_flag(VarNode::Flag::VOLATILE_CONTENT);
    };
    mark_empty_var(output(1));
    mark_empty_var(output(2));
}

SymbolVarArray GeneralNormBackward::make(
        SymbolVar diff, SymbolVar data, SymbolVar weight, SymbolVar mean,
        SymbolVar rstd, const Param& param, const OperatorNodeConfig& config) {
    auto outs = diff.node()
                        ->owner_graph()
                        ->insert_opr(std::make_unique<GeneralNormBackward>(
                                diff.node(), data.node(), weight.node(), mean.node(),
                                rstd.node(), param, config))
                        ->output();
    SymbolVarArray ret;
    for (auto&& out : outs) {
        ret.emplace_back(out);
    }
    return ret;
}

SymbolVarArray GeneralNormBackward::make(
        SymbolVar diff, SymbolVar data, SymbolVar mean, SymbolVar rstd,
        const Param& param, const OperatorNodeConfig& config) {
    auto outs = diff.node()
                        ->owner_graph()
                        ->insert_opr(std::make_unique<GeneralNormBackward>(
                                diff.node(), data.node(), mean.node(), rstd.node(),
                                param, config))
                        ->output();
    SymbolVarArray ret;
    for (auto&& out : outs) {
        ret.emplace_back(out);
    }
    return ret;
}

void GeneralNormBackward::init_output_static_infer_desc() {
    using namespace cg::static_infer;
    auto&& mgr = owner_graph()->static_infer_manager();
    mgr.register_shape_infer(output(0), ShapeInferDesc::make_identity(input(1)));
    if (param().affine) {
        mgr.register_shape_infer(output(1), ShapeInferDesc::make_identity(input(2)));
        mgr.register_shape_infer(output(2), ShapeInferDesc::make_identity(input(2)));
    } else {
        TensorShape empty;
        empty.ndim = 0;
        mgr.register_shape_infer(output(1), ShapeInferDesc::make_const(empty));
        mgr.register_shape_infer(output(2), ShapeInferDesc::make_const(empty));
    }
    this->init_output_static_infer_desc_workspace(false);
}

void GeneralNormBackward::init_output_dtype() {
    output(0)->dtype(input(1)->dtype());
    output(1)->dtype(input(2)->dtype());
    output(2)->dtype(input(2)->dtype());
}

size_t GeneralNormBackward::get_workspace_size_bytes(
        const TensorShapeArray& input_shapes,
        const TensorShapeArray& output_shapes) const {
    return 0;
}

void GeneralNormBackward::scn_do_execute() {
    if (param().affine) {
        megdnn_opr()->exec(
                input(0)->dev_tensor().as_megdnn(), input(1)->dev_tensor().as_megdnn(),
                input(2)->dev_tensor().as_megdnn(), input(3)->dev_tensor().as_megdnn(),
                input(4)->dev_tensor().as_megdnn(), output(0)->dev_tensor().as_megdnn(),
                output(1)->dev_tensor().as_megdnn(),
                output(2)->dev_tensor().as_megdnn(), {});
    } else {
        megdnn_opr()->exec(
                input(0)->dev_tensor().as_megdnn(), input(1)->dev_tensor().as_megdnn(),
                {}, input(2)->dev_tensor().as_megdnn(),
                input(3)->dev_tensor().as_megdnn(), output(0)->dev_tensor().as_megdnn(),
                {}, {}, {});
    }
}

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}