utils.h 22.2 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/common/utils.h
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/**
 * Boost Software License - Version 1.0 - August 17th, 2003
 *
 * Permission is hereby granted, free of charge, to any person or organization
 * obtaining a copy of the software and accompanying documentation covered by
 * this license (the "Software") to use, reproduce, display, distribute,
 * execute, and transmit the Software, and to prepare derivative works of the
 * Software, and to permit third-parties to whom the Software is furnished to
 * do so, all subject to the following:
 *
 * The copyright notices in the Software and this entire statement, including
 * the above license grant, this restriction and the following disclaimer,
 * must be included in all copies of the Software, in whole or in part, and
 * all derivative works of the Software, unless such copies or derivative
 * works are solely in the form of machine-executable object code generated by
 * a source language processor.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
 * SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
 * FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

38 39 40 41 42 43 44
#pragma once

#include "megdnn/arch.h"
#include "megdnn/basic_types.h"
#include "megdnn/dtype.h"
#include "megdnn/handle.h"
#include "megdnn/thin/small_vector.h"
45
#include "megdnn/oprs/general.h"
46

47
#include "src/common/hash_ct.h"
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#include "src/common/utils.cuh"

#include <cmath>
#include <cstdarg>
#include <cstring>
#include <memory>
#include <mutex>
#include <string>
#include <thread>

#if defined(_WIN32)
#include <windows.h>
#endif

#if __cplusplus >= 201703L || __clang_major__ >= 4
    #define MEGDNN_FALLTHRU [[fallthrough]];
#elif __GNUC__ >= 7
    #define MEGDNN_FALLTHRU __attribute__ ((fallthrough));
#else
    #define MEGDNN_FALLTHRU
#endif

#define rep(i, n) for (auto i = decltype(n){0}; i < (n); ++i)
71
#define rep_step(i, n, step) for (auto i = decltype(n){0}; i < (n); i += (step))
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

#define megdnn_assert_contiguous(layout)                              \
    do {                                                              \
        megdnn_assert((layout).is_contiguous(), "%s is %s.", #layout, \
                      (layout).to_string().c_str());                  \
    } while (0)

#define megdnn_assert_non_overlapping_strong(layout)                     \
    do {                                                                 \
        megdnn_assert((layout).is_non_overlapping_strong(), "%s is %s.", \
                      #layout, (layout).to_string().c_str());            \
    } while (0)

#define megdnn_assert_eq_size_t(lhs_, rhs_)                                   \
    do {                                                                      \
        size_t lhs = lhs_, rhs = rhs_;                                        \
        megdnn_assert(lhs == rhs, "%s is %zu, %s is %zu.", #lhs_, lhs, #rhs_, \
                      rhs);                                                   \
    } while (0)

#define megdnn_assert_eq_layout(lhs, rhs)                                      \
    do {                                                                       \
        megdnn_assert(lhs.eq_layout(rhs), "%s is %s, %s is %s.", #lhs,         \
                      lhs.to_string().c_str(), #rhs, rhs.to_string().c_str()); \
    } while (0)

#define megdnn_assert_eq_shape(lhs, rhs)                                       \
    do {                                                                       \
        megdnn_assert(lhs.eq_shape(rhs), "%s is %s, %s is %s.", #lhs,          \
                      lhs.to_string().c_str(), #rhs, rhs.to_string().c_str()); \
    } while (0)

#define megdnn_assert_eq_dtype(lhs, rhs)                                   \
    do {                                                                   \
        megdnn_assert(lhs.dtype == rhs.dtype, "%s is %s, %s is %s.", #lhs, \
                      lhs.dtype.name(), #rhs, rhs.dtype.name());           \
    } while (0)

#define megdnn_layout_msg(layout) \
    std::string(megdnn_mangle(#layout "=" + (layout).to_string()))

#define MEGDNN_LOCK_GUARD(var) \
    std::lock_guard<std::remove_cv_t<decltype(var)>> _lock_guard_##var { var }

namespace megdnn {

/* ================ logging ================  */
#define megdnn_log_debug(fmt...) \
    _megdnn_do_log(::megdnn::LogLevel::DEBUG, __FILE__, __func__, __LINE__, fmt)
#define megdnn_log(fmt...) \
    _megdnn_do_log(::megdnn::LogLevel::INFO, __FILE__, __func__, __LINE__, fmt)
#define megdnn_log_warn(fmt...) \
    _megdnn_do_log(::megdnn::LogLevel::WARN, __FILE__, __func__, __LINE__, fmt)
#define megdnn_log_error(fmt...) \
    _megdnn_do_log(::megdnn::LogLevel::ERROR, __FILE__, __func__, __LINE__, fmt)

#if MEGDNN_ENABLE_LOGGING
void __log__(LogLevel level, const char* file, const char* func, int line,
             const char* fmt, ...) __attribute__((format(printf, 5, 6)));

#define _megdnn_do_log ::megdnn::__log__
#else
#define _megdnn_do_log(...) \
    do {                    \
    } while (0)
#endif  // megdnn_ENABLE_LOGGING

139 140 141 142 143
template <typename T>
constexpr int32_t cast_int(T data) {
    return static_cast<int32_t>(data);
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/* helper functions */
/**
 * \brief Get the next `stride' index lexicographically.
 *
 * stride must be divisible by the last dimension shape.
 * \return true if index is updated successfully, false otherwise (index is
 * already the last one, next index does not exist)
 */
bool get_next_addr(size_t* index, const size_t* shape, size_t n,
                   size_t stride = 1);
size_t get_linear_addr(size_t* index, const size_t* shape, size_t n);
int get_linear_addr_noncont(size_t* index, const TensorLayout& layout);
size_t infer_conv_shape(size_t inp, size_t flt, size_t stride, size_t pad,
                        bool is_floor = true);
void infer_conv_shape2d(size_t ih, size_t iw, size_t fh, size_t fw, size_t sh,
                        size_t sw, size_t ph, size_t pw, size_t& oh, size_t& ow,
                        bool is_floor = true);
template <typename T, typename S, typename Func>
SmallVector<T> apply_vector(Func&& func, const SmallVector<S>& vec);
std::string ssprintf(const char* fmt, ...)
        __attribute__((format(printf, 1, 2)));

/*!
 * \brief transpose (m*n) matrix to (n*m) matrix
 *
 * -1 in \p lds and \p ldd means default leading dimensions (= nr. columns)
 *
 * Note that transpose and transpose_knc2nsck are implemented in x86/utils.cpp
 * and arm_common/util.cpp, subject to the target platform.
 *
 */
template <typename dtype>
void transpose(const dtype* src, dtype* dst, size_t m, size_t n,
               ptrdiff_t lds = -1, ptrdiff_t ldd = -1);

/*!
 * transpose src with contiguous layout (k, n, c) into dst with shape
 * (n, c, k), with given stride (\p n_stride) on first dimension
 */
template <typename dtype>
void transpose_knc2nsck(const dtype* src, dtype* dst, size_t k, size_t n,
                        size_t c, size_t n_stride);

/*!
 * \brief divide get result ceiled to int; both dividend and divisor shoud be
 * non-negative
 */
template <typename int_t>
int_t div_ceil(int_t dividend, int_t divisor);

/*!
 * \brief divide get result floored to int; both dividend and divisor shoud be
 * non-negative
 */
template <typename int_t>
int_t div_floor(int_t dividend, int_t divisor);

/*!
 * \brief get geometric mean of a and b
 */
inline dt_float32 geometric_mean(dt_float32 a, dt_float32 b) {
    return std::sqrt(a * b);
}

/*!
 * \brief calculate x*x
 */
template <typename num_t>
num_t sqr(num_t x) {
    return x * x;
}

template <typename T, typename... Args>
std::unique_ptr<T> make_unique(Args&&... args) {
    return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/*!
 * \brief check whether the source enum contain the target data type enum
 */
bool inline contain_data_type(detail::AlgoDataType source,
                       detail::AlgoDataType target) {
    return static_cast<bool>(static_cast<uint32_t>(source) &
                             static_cast<uint32_t>(target));
}

/*!
 * \brief get the source enum contain the data type number
 */
template<typename T>
size_t nr_type_contain(T index) {
    uint32_t sr_index = static_cast<uint32_t>(index);
    size_t nr_type = 0;
    while (sr_index != 0) {
        nr_type++;
        sr_index &= (sr_index - 1);
    }
    return nr_type;
}

244 245 246 247 248 249 250
/**
 * \brief Aligned workspace bundle.
 *
 * Each individual workspace is aligned to align_in_bytes.
 */
class WorkspaceBundle {
public:
251
    WorkspaceBundle(void* ptr, SmallVector<size_t> sizes_in_bytes,
252 253 254 255 256 257 258 259 260
                    size_t align_in_bytes = 512);
    /**
     * \returns raw workspace ptr.
     *
     * Note that ptr() is different than get(0), in that
     * the result of ptr() is possibly not aligned.
     */
    void* ptr() const;
    /**
261
     * \returns the i-th workspace ptr (aligned)
262
     */
263
    void* get(size_t i) const;
264 265 266 267 268
    /**
     * \returns total size taking into account paddings to solve alignment
     * issue.
     */
    size_t total_size_in_bytes() const;
269
    size_t get_size(size_t i) const;
270 271 272
    size_t nr_workspace() const;
    void set(void* ptr);

273 274
    Workspace get_workspace(size_t i) const {
        return {static_cast<dt_byte*>(get(i)), get_size(i)};
275 276 277 278
    }

private:
    void* m_ptr;
279
    SmallVector<size_t> m_sizes;
280 281 282 283 284 285 286 287
    SmallVector<size_t> m_aligned_sizes;
    size_t m_align_in_bytes;
};

MEGDNN_CONSTEXPR std::size_t operator"" _z(unsigned long long n) {
    return n;
}

288 289 290 291
constexpr uint32_t operator"" _hash(char const* str, size_t count) {
    return XXHash64CT::hash(str, count, 20160701);
}

292 293 294 295 296 297 298
// refer to https://www.boost.org/doc/libs/1_64_0/boost/functional/hash/hash.hpp
template <typename T>
inline T hash_combine(T seed, T value) {
    seed ^= value + 0x9e3779b9 + (seed << 6) + (seed >> 2);
    return seed;
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
template <typename Vec>
std::string vec2str(Vec&& vec) {
    std::string res;
    res.append("{");
    for (size_t i = 0; i < vec.size(); ++i) {
        res.append(std::to_string(vec[i]));
        if (i + 1 < vec.size())
            res.append(",");
    }
    res.append("}");
    return res;
}

// facilitate tile and repeat
size_t count_not_ones_in_shape(const TensorShape& shape);

/*!
 * \brief whether a TensorLayout is of NHWC format and contiguous on the W and
 *  C dimensions.
 *
 * if true, it implies that a TensorND with given layout is convertible to
 * a Mat for the use of cv algorithms.
 */
bool is_nhwc_contig_wc(const TensorLayout& layout);

static inline void copy_plane_in_bytes(void* dst, const void* src,
                                       size_t height, size_t width,
                                       size_t stride_dst, size_t stride_src) {
    for (size_t h = 0; h < height; ++h) {
        std::memcpy(static_cast<unsigned char*>(dst) + h * stride_dst,
                    static_cast<const unsigned char*>(src) + h * stride_src,
                    width);
    }
}

megcoreDeviceHandle_t get_device_handle(Handle* handle);

static inline void incr_voidp(void*& ptr, ptrdiff_t delta) {
    ptr = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(ptr) + delta);
}

/*!
 * \brief align *val* to be multiples of *align*
 * \param align required alignment, which must be power of 2
 */
template <typename T>
static inline T get_aligned_power2(T val, T align) {
    auto d = val & (align - 1);
    val += (align - d) & (align - 1);
    return val;
}

template <typename T, typename S>
inline T saturate(S x, S lower, S upper) {
    //! in(nan) -> out(lower) :
    //! match the meaning with fmax(in dtype.h) when dealing with nan
    S val = x > upper ? upper : (x >= lower ? x : lower);
    return static_cast<T>(val);
}

/*!
 * \brief divide get result ceiled to int; both dividend and divisor shoud be
 * non-negative
 */
template <typename int_t>
int_t div_ceil(int_t dividend, int_t divisor) {
    static_assert(std::is_integral<int_t>::value, "must be integers");
    megdnn_assert_internal(dividend >= 0);
    megdnn_assert_internal(divisor > 0);
    return (dividend + divisor - 1) / divisor;
}

/*!
 * \brief divide get result floored to int; both dividend and divisor shoud be
 * non-negative
 */
template <typename int_t>
int_t div_floor(int_t dividend, int_t divisor) {
    static_assert(std::is_integral<int_t>::value, "must be integers");
    megdnn_assert_internal(dividend >= 0);
    megdnn_assert_internal(divisor > 0);
    return dividend / divisor;
}

/*!
 * \brief round result to multiply of divisor; both dividend and divisor shoud
 * be non-negative
 */
template <typename int_t>
int_t round_up(int_t dividend, int_t divisor) {
    static_assert(std::is_integral<int_t>::value, "must be integers");
    megdnn_assert_internal(dividend >= 0);
    megdnn_assert_internal(divisor > 0);
    return ((dividend + divisor - 1) / divisor) * divisor;
}

template <typename T, typename S, typename Func>
SmallVector<T> apply_vector(Func&& func, const SmallVector<S>& vec) {
    SmallVector<T> res(vec.size());
    std::transform(vec.begin(), vec.end(), res.begin(), func);
    return res;
}

template <typename T>
struct SafeMultiplies;

template <typename T>
406 407 408
#if __cplusplus >= 201703L
struct _SafeMultipliesImplUnsigned {
#else
409
struct _SafeMultipliesImplUnsigned : public std::binary_function<T, T, T> {
410
#endif
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
    static MEGDNN_CONSTEXPR size_t nbits = sizeof(T) * 8;

    static size_t clz(unsigned x) {
        size_t n;
#if defined(_MSC_VER)
        DWORD leading_zero;
        _BitScanReverse(&leading_zero, x);
        n = 31 - leading_zero;
#else
        n = __builtin_clz(x);
#endif
        return x ? n : nbits;
    }

    static size_t clz(unsigned long x) {
        size_t n;
#if defined(_MSC_VER)
        DWORD leading_zero;
        _BitScanReverse(&leading_zero, x);
        n = 31 - leading_zero;
#else
        n = __builtin_clzl(x);
#endif
        return x ? n : nbits;
    }

    static size_t clz(unsigned long long x) {
        size_t n;
#if defined(_MSC_VER)
        DWORD leading_zero;
        _BitScanReverse64(&leading_zero, x);
        n = 63 - leading_zero;
#else
        n = __builtin_clzll(x);
#endif
        return x ? n : nbits;
    }

    T operator()(const T& x, const T& y) const {
        int overflow = clz(x) + clz(y) + 2 <= nbits;
        T t = x * (y >> 1);  // clz(x)+clz(y/2) >= nbits, t must not overflow
        overflow |= t >> (nbits - 1);
        t <<= 1;
        auto yodd = y & 1;
        t += yodd ? x : 0;
        overflow |= yodd & (t < x);

        megdnn_assert(!overflow, "multiply overflow: %s %s",
                      std::to_string(x).c_str(), std::to_string(y).c_str());
        return t;
    }

    template <typename U, typename V>
    U operator()(const U&, const V&) const {
        static_assert(
                // can not be true
                std::is_same<U, T>::value && std::is_same<V, T>::value,
                "implicit conversion disallowed in SafeMultiplies");
        megdnn_trap();
    }
};

template <>
struct SafeMultiplies<size_t> : public _SafeMultipliesImplUnsigned<size_t> {};

template <typename T>
bool vec_contains(const std::vector<T>& vec, const T& elem) {
    return std::find(vec.begin(), vec.end(), elem) != vec.end();
}

template <typename T>
bool vec_contains(const SmallVector<T>& vec, const T& elem) {
    return std::find(vec.begin(), vec.end(), elem) != vec.end();
}

float mul_scale(DType lhs, DType rhs);

template <typename stype, typename dtype>
dtype convert(stype src, dtype dst, size_t offset);

template <>
uint8_t convert<dt_quint4, uint8_t>(dt_quint4 src, uint8_t dst, size_t offset);

template <>
dt_quint4 convert<uint8_t, dt_quint4>(uint8_t src, dt_quint4 dst, size_t offset);

template <>
int8_t convert<dt_qint4, int8_t>(dt_qint4 src, int8_t dst, size_t offset);

template <>
dt_qint4 convert<int8_t, dt_qint4>(int8_t src, dt_qint4 dst, size_t offset);

503 504 505 506 507 508 509 510 511 512 513 514 515 516
/*!
 * \brief check float equal within given ULP(unit in the last place)
 */
template <class T>
static inline
        typename std::enable_if<!std::numeric_limits<T>::is_integer, bool>::type
        almost_equal(T x, T y, int unit_last_place = 1) {
    return std::abs(x - y) < (std::numeric_limits<T>::epsilon() *
                              std::abs(x + y) * unit_last_place) ||
           std::abs(x - y) < std::numeric_limits<T>::min();
}

bool dtype_almost_equal(DType lhs, DType rhs);

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
/**
 * \brief N-dimensional index space
 */
class CpuNDRange {
    static MEGDNN_CONSTEXPR size_t MAX_NDIM = MEGDNN_MAX_NDIM;

private:
    size_t m_dim[MAX_NDIM];
    size_t m_dimension;

public:
    //! \brief Constructs seven-dimensional range.
    CpuNDRange(size_t size0, size_t size1, size_t size2, size_t size3,
               size_t size4, size_t size5, size_t size6)
            : m_dimension(7) {
        m_dim[0] = size0;
        m_dim[1] = size1;
        m_dim[2] = size2;
        m_dim[3] = size3;
        m_dim[4] = size4;
        m_dim[5] = size5;
        m_dim[6] = size6;
    }
    //! \brief Constructs range has zero dimensions.
    CpuNDRange() : CpuNDRange(1, 1, 1, 1, 1, 1, 1) { m_dimension = 0; }

    //! \brief Constructs one-dimensional range.
    CpuNDRange(size_t size0) : CpuNDRange(size0, 1, 1, 1, 1, 1, 1) {
        m_dimension = 1;
    }

    //! \brief Constructs two-dimensional range.
    CpuNDRange(size_t size0, size_t size1)
            : CpuNDRange(size0, size1, 1, 1, 1, 1, 1) {
        m_dimension = 2;
    }

    //! \brief Constructs three-dimensional range.
    CpuNDRange(size_t size0, size_t size1, size_t size2)
            : CpuNDRange(size0, size1, size2, 1, 1, 1, 1) {
        m_dimension = 3;
    }

    //! \brief Constructs four-dimensional range.
    CpuNDRange(size_t size0, size_t size1, size_t size2, size_t size3)
            : CpuNDRange(size0, size1, size2, size3, 1, 1, 1) {
        m_dimension = 4;
    }

    //! \brief Constructs five-dimensional range.
    CpuNDRange(size_t size0, size_t size1, size_t size2, size_t size3,
               size_t size4)
            : CpuNDRange(size0, size1, size2, size3, size4, 1, 1) {
        m_dimension = 5;
    }

    //! \brief Constructs six-dimensional range.
    CpuNDRange(size_t size0, size_t size1, size_t size2, size_t size3,
               size_t size4, size_t size5)
            : CpuNDRange(size0, size1, size2, size3, size4, size5, 1) {
        m_dimension = 6;
    }

    //! \brief Constructs every dim from global
    CpuNDRange(const CpuNDRange& dims, size_t global) {
        m_dimension = dims.dimension();
        for (int i = m_dimension - 1; i >= 0; i--) {
            m_dim[i] = global % dims[i];
            global /= dims[i];
        }
    }

    //! \brief Queries the number of dimensions in the range.
    size_t dimension() const { return m_dimension; }

    //! \brief Returns the size of the object in bytes based on the
    // runtime number of dimensions
    size_t size() const { return m_dimension * sizeof(size_t); }

    size_t* get() { return m_dimension ? m_dim : nullptr; }

    size_t& operator[](size_t idx);
    size_t& operator[](size_t idx) const {
        return const_cast<CpuNDRange*>(this)->operator[](idx);
    };

    const size_t* get() const { return const_cast<CpuNDRange*>(this)->get(); }

    size_t total_size() const {
        size_t ret = 1;
        for (size_t i = 0; i < m_dimension; i++) {
            ret *= m_dim[i];
        }
        return ret;
    }

    //! \brief get the dims string
    std::string to_string() const;
};

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
/**!
 * \brief helpers for oprs using typecvt between comp_type and dst_type
 * \tparam SrcType src type
 * \tparam CompType compute type, such as fp32 for conv
 * \tparam DstType dst type
 */
template <typename SrcType, typename CompType, typename DstType = SrcType>
struct CompTypeCvter {
    std::unique_ptr<TypeCvt> m_cvt_opr;
    WorkspaceBundle* m_workspace_bundle;
    size_t m_workspace_idx;
    CompTypeCvter(Handle* handle, WorkspaceBundle* bundle)
            : m_workspace_bundle(bundle), m_workspace_idx(0) {
        megdnn_assert(
                (DTypeTrait<SrcType>::enumv != DTypeTrait<CompType>::enumv &&
                 DTypeTrait<DstType>::enumv != DTypeTrait<CompType>::enumv),
                "SrcType(%s) == CompType(%s) or DstType(%s) == CompType(%s) is "
                "not "
                "supportted.",
                SrcType().name(), CompType().name(), DstType().name(),
                CompType().name());
        m_cvt_opr = handle->create_operator<TypeCvt>();
    }

    //! Convert tensor dtype from SrcType to CompType.
    CompTypeCvter& src_to_comp_type(const TensorND& src, TensorND& comp) {
        if (src.layout.dtype.enumv() == DTypeTrait<SrcType>::enumv) {
            if (!comp.layout.dtype.valid() ||
                comp.layout.dtype.enumv() != DTypeTrait<CompType>::enumv) {
                comp.layout.dtype = CompType();
                comp.layout.init_contiguous_stride();
                comp.raw_ptr = m_workspace_bundle->get(m_workspace_idx++);
                if (src.layout.ndim) {
                    m_cvt_opr->exec(src, comp);
                }
            }
        }
        return *this;
    }

    //! Convert tensor dtype from CompType to DstType.
    CompTypeCvter& comp_to_dst_type(const TensorND& comp, const TensorND& dst) {
        megdnn_assert(comp.layout.dtype.enumv() == DTypeTrait<CompType>::enumv);
        if (dst.layout.dtype.enumv() == DTypeTrait<DstType>::enumv) {
            m_cvt_opr->exec(comp, dst);
        }
        return *this;
    }

    Workspace workspace() {
        return m_workspace_bundle->get_workspace(m_workspace_idx);
    }
};
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685

/*!
 * \brief get TensorND raw_ptr+low_byte pointer.
 */
inline dt_byte* get_low_ptr(const TensorND* tensor) {
    return static_cast<dt_byte*>(tensor->raw_ptr) +
           tensor->layout.span().low_byte;
}

/*!
 * \brief get the zero element pointer of TensorND.
 */
inline void* get_origin_ptr(const TensorND* tensor, void* ptr) {
    return static_cast<void*>(static_cast<dt_byte*>(ptr) -
                              tensor->layout.span().low_byte);
}
686 687 688
}  // namespace megdnn

// vim: syntax=cpp.doxygen