blas.cpp 21.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
/**
 * \file src/opr/impl/blas.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/opr/blas.h"
#include "megbrain/common.h"
#include "megbrain/comp_node_env.h"
#include "megbrain/graph/grad_impl.h"
#include "megbrain/opr/basic_arith_wrapper.h"
#include "megbrain/opr/indexing.h"
#include "megbrain/opr/tensor_gen.h"
#include "megbrain/opr/tensor_manip.h"

#include "./internal/megdnn_opr_wrapper.inl"

using namespace mgb;
using namespace opr;

/* ================= MatrixMul =================  */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(MatrixMul);
MEGDNN_OPR_INIT2(MatrixMul, "matrix_mul")

void MatrixMul::init_output_dtype() {
    DType output_dtype = config().output_dtype();
    megdnn_opr()->deduce_dtype(input(0)->dtype(), input(1)->dtype(),
                               output_dtype);
    output(0)->dtype(output_dtype);
}

bool MatrixMul::check_layout(const TensorLayout& layout, int transpose) {
    mgb_assert(layout.ndim == 2, "input to MatrixMul must be 2-dim; got %s",
               layout.to_string().c_str());
    return layout.stride[0 ^ transpose] >=
                   static_cast<ptrdiff_t>(layout.shape[1 ^ transpose]) &&
           layout.stride[1 ^ transpose] == 1;
}

void MatrixMul::add_input_layout_constraint() {
    auto check = [](const TensorLayout& ly) {
        return check_layout(ly, 0) || check_layout(ly, 1);
    };
    input(0)->add_layout_constraint(check);
    input(1)->add_layout_constraint(check);
}

size_t MatrixMul::get_workspace_size_bytes(
        const TensorShapeArray& input_shapes,
        const TensorShapeArray& output_shapes) const {
    // we may change transepose param in the impl, so get the max possible
    // workspace by trying all cases
    // current implementation in megdnn guarantees that workspaces in different
    // cases are on the same order of magnitude
    auto mo = megdnn_opr();
    auto&& tparam = mo->param();
    size_t a, b, c, d;
    mgb_assert(input_shapes.size() == 2 && output_shapes.size() == 1);
    TensorLayout i0(input_shapes[0], input(0)->dtype()),
            i1(input_shapes[1], input(1)->dtype()),
            out(output_shapes[0], output(0)->dtype());

    auto transpose = [](TensorLayout& dst, bool& param) {
        std::swap(dst.shape[0], dst.shape[1]);
        dst.stride[0] = dst[1];
        param ^= 1;
    };
    MGB_TRY {
        a = mo->get_workspace_in_bytes(i0, i1, out);
        transpose(i0, tparam.transposeA);
        b = mo->get_workspace_in_bytes(i0, i1, out);
        transpose(i1, tparam.transposeB);
        c = mo->get_workspace_in_bytes(i0, i1, out);
        transpose(i0, tparam.transposeA);
        d = mo->get_workspace_in_bytes(i0, i1, out);
    }
    MGB_FINALLY({ tparam = this->param(); });
    return std::max(std::max(a, b), std::max(c, d));
}

void MatrixMul::scn_do_execute() {
    auto inp0 = input(0)->dev_tensor().as_megdnn(),
         inp1 = input(1)->dev_tensor().as_megdnn(),
         out = output(0)->dev_tensor().as_megdnn();
    auto transpose = [](TensorLayout& layout, bool& trans) {
        if (!check_layout(layout, 0)) {
            mgb_assert(check_layout(layout, 1));
            std::swap(layout.shape[0], layout.shape[1]);
            std::swap(layout.stride[0], layout.stride[1]);
            trans ^= 1;
        }
    };
    auto&& tparam = megdnn_opr()->param();
    MGB_TRY {
        transpose(inp0.layout, tparam.transposeA);
        transpose(inp1.layout, tparam.transposeB);
        megdnn_opr()->exec(inp0, inp1, out,
                           intl::get_megdnn_workspace_from_var(output(1)));
    }
    MGB_FINALLY({ tparam = this->param(); });
}

MGB_IMPL_OPR_GRAD(MatrixMul) {
    mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT,
               "only float data type supported for grad");
    SymbolVar grad, i0{opr.input(0)}, i1{opr.input(1)}, og{out_grad[0]};
    if (wrt_idx == 0) {
        // A * B = C, A' = C' * Bt
        if (opr.param().transposeA) {
            grad = MatrixMul::make(i1, og, {opr.param().transposeB, true});
        } else {
            grad = MatrixMul::make(og, i1, {false, !opr.param().transposeB});
        }
    } else {
        mgb_assert(wrt_idx == 1);
        // A * B = C, B' = At * C'
        if (opr.param().transposeB) {
            grad = MatrixMul::make(og, i0, {true, opr.param().transposeA});
        } else {
            grad = MatrixMul::make(i0, og, {!opr.param().transposeA, false});
        }
    }
    return grad.node();
}

/* ================= BatchedMatrixMul =================  */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(BatchedMatrixMul);
MEGDNN_OPR_INIT2(BatchedMatrixMul, "batched_matrix_mul")

void BatchedMatrixMul::add_input_layout_constraint() {
    auto check = [](const TensorLayout& ly) {
        mgb_assert(ly.ndim == 3,
                   "input to BatchedMatrixMul must be 3-dim; got %s",
                   ly.to_string().c_str());

        bool good_layout =
                ((ly.stride[0] >=
                  static_cast<ptrdiff_t>(ly.shape[1] * ly.stride[1])) &&
                 (ly.stride[0] >=
                  static_cast<ptrdiff_t>(ly.shape[2] * ly.stride[2])));

        bool ret = good_layout &&
                   (check_layout(ly, true) || check_layout(ly, false));
        return ret;
    };
    input(0)->add_layout_constraint(check);
    input(1)->add_layout_constraint(check);
}

void BatchedMatrixMul::init_output_dtype() {
    DType output_dtype = config().output_dtype();
    megdnn_opr()->deduce_dtype(input(0)->dtype(), input(1)->dtype(),
                               output_dtype);
    output(0)->dtype(output_dtype);
}

bool BatchedMatrixMul::check_layout(const TensorLayout& layout,
                                    bool transpose) {
    int lhs = (transpose) ? 2 : 1, rhs = (transpose) ? 1 : 2;
    return (layout.stride[lhs] >= static_cast<ptrdiff_t>(layout.shape[rhs])) &&
           (layout.stride[rhs] == 1);
}

size_t BatchedMatrixMul::get_workspace_size_bytes(
        const TensorShapeArray& input_shapes,
        const TensorShapeArray& output_shapes) const {
    // we may change transepose param in the impl, so get the max possible
    // workspace by trying all cases
    // current implementation in megdnn guarantees that workspaces in different
    // cases are on the same order of magnitude
    auto mo = megdnn_opr();
    auto&& tparam = mo->param();
    size_t a, b, c, d;
    mgb_assert(input_shapes.size() == 2 && output_shapes.size() == 1);
    TensorLayout i0(input_shapes[0], input(0)->dtype()),
            i1(input_shapes[1], input(1)->dtype()),
            out(output_shapes[0], output(0)->dtype());

    auto transpose = [](TensorLayout& dst, bool& param) {
        std::swap(dst.shape[1], dst.shape[2]);
        dst.stride[1] = dst[2];
        param ^= 1;
    };
    MGB_TRY {
        a = mo->get_workspace_in_bytes(i0, i1, out);
        transpose(i0, tparam.transposeA);
        b = mo->get_workspace_in_bytes(i0, i1, out);
        transpose(i1, tparam.transposeB);
        c = mo->get_workspace_in_bytes(i0, i1, out);
        transpose(i0, tparam.transposeA);
        d = mo->get_workspace_in_bytes(i0, i1, out);
    }
    MGB_FINALLY({ tparam = this->param(); });
    return std::max(std::max(a, b), std::max(c, d));
}

void BatchedMatrixMul::scn_do_execute() {
    auto inp0 = input(0)->dev_tensor().as_megdnn(),
         inp1 = input(1)->dev_tensor().as_megdnn(),
         out = output(0)->dev_tensor().as_megdnn();
    auto transpose = [](TensorLayout& layout, bool& trans) {
        if (!check_layout(layout, false)) {
            mgb_assert(check_layout(layout, true));
            std::swap(layout.shape[1], layout.shape[2]);
            std::swap(layout.stride[1], layout.stride[2]);
            mgb_assert(layout.stride[2] == 1);
            trans ^= 1;
        }
    };
    auto&& tparam = megdnn_opr()->param();
    MGB_TRY {
        transpose(inp0.layout, tparam.transposeA);
        transpose(inp1.layout, tparam.transposeB);
        megdnn_opr()->exec(inp0, inp1, out,
                           intl::get_megdnn_workspace_from_var(output(1)));
    }
    MGB_FINALLY({ tparam = this->param(); });
}

MGB_IMPL_OPR_GRAD(BatchedMatrixMul) {
    mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT,
            "only float data type supported for grad");
    mgb_assert(out_grad.size() == 2 && !out_grad[1]);
    SymbolVar grad, i0{opr.input(0)}, i1{opr.input(1)}, og{out_grad[0]};
    if (wrt_idx == 0) {
        // A * B = C, A' = C' * Bt
        if (opr.param().transposeA) {
            grad = BatchedMatrixMul::make(
                    i1, og, {opr.param().transposeB, true});
        } else {
            grad = BatchedMatrixMul::make(
                    og, i1, {false, !opr.param().transposeB});
        }
    } else {
        mgb_assert(wrt_idx == 1);
        // A * B = C, B' = At * C'
        if (opr.param().transposeB) {
            grad = BatchedMatrixMul::make(
                    og, i0, {true, opr.param().transposeA});
        } else {
            grad = BatchedMatrixMul::make(
                    i0, og, {!opr.param().transposeA, false});
        }
    }
    return grad.node();
}

/* ================= Dot =================  */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(Dot);

Dot::Dot(VarNode *opr0, VarNode *opr1, const OperatorNodeConfig &config):
    Super{opr0->owner_graph(), config, "dot", {opr0, opr1}}
{
    init_megdnn_opr(*this, {});
    add_input({opr0, opr1}, AddInputSortType::CUR_ADDED);
    static_assert(std::is_empty<Param>::value, "Dot param should be empty");
    mgb_assert(opr0->dtype().category() != DTypeCategory::QUANTIZED &&
                       opr1->dtype().category() != DTypeCategory::QUANTIZED,
               "Dot does not support quantized input.");
}

void Dot::init_output_static_infer_desc() {
    using namespace cg::static_infer;
    auto &&mgr = owner_graph()->static_infer_manager();
    auto infer_shp = [](TensorShape &dest, const InpVal &){
        dest = {1};
        return true;
    };
    auto infer_workspace = [this](TensorShape &dest, const InpVal &iv) {
        auto dtype = input(0)->dtype();
        TensorLayout ily(
                {std::max(
                        iv.val[0].shape().total_nr_elems(),
                        iv.val[1].shape().total_nr_elems())},
                dtype);
        dest.ndim = 1;
        dest.shape[0] = megdnn_opr()->get_workspace_in_bytes(
                ily, ily, {{1}, dtype});
        return true;
    };
    mgr.register_shape_infer(output(0), {SourceType::CONSTANT, {}, infer_shp});
    mgr.register_shape_infer(output(1),
            {SourceType::DEP,
            {{input(0), DepType::SHAPE}, {input(1), DepType::SHAPE}},
            infer_workspace});
}

void Dot::scn_do_execute() {
    auto i0 = input(0)->dev_tensor().as_megdnn(),
         i1 = input(1)->dev_tensor().as_megdnn();
    mgb_throw_if(i0.layout.ndim != 1 || i1.layout.ndim != 1, GraphError,
            "Invalid input shapes for Dot: %s",
            cg::dump_var_info(input()).c_str());
    if (i0.layout.shape[0] != i1.layout.shape[0]) {
        bool s0 = i0.layout.shape[0] == 1, s1 = i1.layout.shape[0] == 1;
        mgb_throw_if(!s0 && !s1, GraphError,
                "Invalid input shapes for Dot: %s",
                cg::dump_var_info(input()).c_str());
        if (s0) {
            i0.layout.shape[0] = i1.layout.shape[0];
            i0.layout.stride[0] = 0;
        }
        else {
            i1.layout.shape[0] = i0.layout.shape[0];
            i1.layout.stride[0] = 0;
        }
    }
    megdnn_opr()->exec(i0, i1, output(0)->dev_tensor().as_megdnn(),
            intl::get_megdnn_workspace_from_var(output(1)));
}

void Dot::add_input_layout_constraint() {
    auto check = [](const TensorLayout &ly) {
        mgb_throw_if(ly.ndim != 1, GraphError,
                "Dot input must be 1-dim; got %s", ly.to_string().c_str());
        return ly.stride[0] >= 0;
    };
    input(0)->add_layout_constraint(check);
    input(1)->add_layout_constraint(check);
}

MGB_IMPL_OPR_GRAD(Dot) {
    auto other_input = opr.input(wrt_idx == 0 ? 1 : 0);
    auto ishp0 = opr::GetVarShape::make(opr.input(0)),
         ishp1 = opr::GetVarShape::make(opr.input(1));
    auto max_ishp = opr::GetVarShape::make({opr.input(0), opr.input(1)});
    return reduce_sum(
            Broadcast::make(mul(out_grad[0], other_input), max_ishp),
            wrt_idx ? ishp1 : ishp0).node();
}

SymbolVar Dot::make(SymbolVar opr0, SymbolVar opr1,
         const OperatorNodeConfig &config) {
    return opr0.insert_single_output_opr<Dot>(opr0.node(), opr1.node(), config);
}

void Dot::record_execute_deps(ExecDependencyArray &deps) {
    record_megdnn_opr(deps);
}

/* ================= MatrixInverse =================  */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(MatrixInverse);
MEGDNN_OPR_INIT1(MatrixInverse, "matrix_inv")
MGB_IMPL_OPR_GRAD(MatrixInverse) {
    SymbolVar a = opr.output(0);
    // TODO: use unified MatrixMul interface when we have it
    auto n = opr::Subtensor::make(a.symshape(),
            {opr::Subtensor::AxisIndexer::make_index(0, a.make_scalar(-1))}),
         tshp = opr::Concat::make({a.make_scalar(0), n, n}, 0),
         // our hard disk is limited so derivation of the gradient is omitted:)
         a_bnn = opr::Dimshuffle::make(opr::Reshape::make(a, tshp, 0),
                 {0, 2, 1}),
         dy = opr::Reshape::make(out_grad.at(0), tshp, 0),
         da = - BatchedMatrixMul::make(BatchedMatrixMul::make(a_bnn, dy),
                 a_bnn);
    return da.reshape(a.symshape()).node();
}

/* ================= SVD =================  */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(SVD);

SVD::SVD(VarNode* src, const Param& param, const OperatorNodeConfig& config) :
        Super(OperatorNodeBaseCtorParam{src->owner_graph(),
                                        config, "svd", {src}}) {
    mgb_assert(src->dtype() == megdnn::dtype::Float32(),
               "Singular Value Decomposition on non-float32 tensors is "
               "not supoorted.");
    init_megdnn_opr(*this, param);
    add_input({src});

    if (!param.compute_uv) {
        output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE)
                  .add_flag(VarNode::Flag::VOLATILE_CONTENT);
        output(2)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE)
                  .add_flag(VarNode::Flag::VOLATILE_CONTENT);
    }
}

namespace {

/*!
 * \brief a wrapper similar to SymbolVar but can safely contain nullptr as zero
 *
 * Note: here we introduce a new class of SymbolVar representation, which allows
 * nullptr to represent zero values, and overload other C++ operators
 * accordingly.  Therefore we can avoid testing nullptr values everywhere in SVD
 * grad.
 *
 * This is a general approach. It can be moved to some header file if we
 * encounter another operator that also has complex gradient computation.
 */
class SafeSymbolVar {
    VarNode* m_node;

public:
    explicit SafeSymbolVar(VarNode* node) : m_node{node} {}

    SafeSymbolVar(SymbolVar x) : m_node{x.node()} {}

    SafeSymbolVar() : m_node{nullptr} {}

    VarNode* node() const { return m_node; }
    SymbolVar s() const { return m_node; }

#define FWD(name)                                                   \
    template <typename... Args>                                     \
    SafeSymbolVar name(Args&&... args) {                            \
        if (!m_node)                                                \
            return {};                                              \
        return SymbolVar{m_node}.name(std::forward<Args>(args)...); \
    }
    FWD(reshape)
    FWD(broadcast)
#undef FWD
};

SymbolVar unsafe(SymbolVar x) {
    return x;
}
SymbolVar unsafe(SafeSymbolVar x) {
    return x.s();
}

template <typename T>
T reshape_anybatch(T x, SymbolVar tshp) {
    if (!x.node())
        return x;
    return opr::Reshape::make(unsafe(x), tshp, 0);
}

template <typename T>
T trans(T x) {
    if (!x.node())
        return x;
    return opr::Dimshuffle::make(unsafe(x), {0, 2, 1});
}

template <typename T>
T matmul(T a, T b, const opr::BatchedMatrixMul::Param& param = {}) {
    if (!a.node() || !b.node())
        return {};
    return opr::BatchedMatrixMul::make(unsafe(a), unsafe(b), param);
}

SafeSymbolVar matmuls(SafeSymbolVar x, SafeSymbolVar y,
                      const opr::BatchedMatrixMul::Param& param = {}) {
    return matmul(x, y, param);
}

SafeSymbolVar operator-(SafeSymbolVar x) {
    if (x.node())
        return -x.s();
    return {};
}

#define OP(x, a_, b_)                                            \
    SafeSymbolVar operator x(SafeSymbolVar a, SafeSymbolVar b) { \
        if (!a.node())                                           \
            return a_;                                           \
        if (!b.node())                                           \
            return b_;                                           \
        return a.s() x b.s();                                    \
    }
OP(+, b, a)
OP(-, -b, a)
OP(*, {}, {})
#undef OP

}  // anonymous namespace

MGB_IMPL_OPR_GRAD(SVD) {
    /**
     * The formula is copied from
     * https://j-towns.github.io/papers/svd-derivative.pdf
     * It is hard to compare m, n here, so I do not refer this paper :
     * http://eprints.maths.ox.ac.uk/1079/1/NA-08-01.pdf
     */
    mgb_throw_if(!opr.param().compute_uv, MegBrainError,
                 "Singular value decomposition gradient computation depends "
                 "on U and V, please set compute_uv = True");
    SymbolVar a{opr.input(0)}, u_raw{opr.output(0)}, s_raw{opr.output(1)},
            vt_raw{opr.output(2)};
    SafeSymbolVar grad_u_raw{out_grad[0]}, grad_s_raw{out_grad[1]},
            grad_vt_raw{out_grad[2]};
    auto param10 = BatchedMatrixMul::Param{true, false},
         param00 = BatchedMatrixMul::Param{false, false},
         param01 = BatchedMatrixMul::Param{false, true};
    auto n = opr::Subtensor::make(a.symshape(),
                                  {opr::Subtensor::AxisIndexer::make_index(
                                          0, a.make_scalar(-1))}),
         m = opr::Subtensor::make(a.symshape(),
                                  {opr::Subtensor::AxisIndexer::make_index(
                                          0, a.make_scalar(-2))}),
         r = opr::Subtensor::make(s_raw.symshape(),
                                  {opr::Subtensor::AxisIndexer::make_index(
                                          0, s_raw.make_scalar(-1))});
    SymbolVar sshp = opr::Concat::make({a.make_scalar(0), r}, 0),
              ushp = opr::Concat::make({a.make_scalar(0), m, r}, 0),
              vtshp = opr::Concat::make({a.make_scalar(0), r, n}, 0),
              u = reshape_anybatch(u_raw, ushp),
              vt = reshape_anybatch(vt_raw, vtshp), v = trans(vt);
    SafeSymbolVar grad_u = reshape_anybatch(grad_u_raw, ushp),
                  grad_vt = reshape_anybatch(grad_vt_raw, vtshp),
                  grad_v = trans(grad_vt);
    auto batches = opr::Subtensor::make(
            u.symshape(),
            {opr::Subtensor::AxisIndexer::make_index(0, u.make_scalar(-3))});
    auto brr = opr::Concat::make({batches, r, r}, 0);
    auto I_r = opr::Eye::make(r, {0, DTypeEnum::Float32})
                       .reshape(opr::Concat::make({a.make_scalar(1), r, r}, 0))
                       .broadcast(brr),
         filter_matrix = 1 - I_r;
    auto sf = reshape_anybatch(s_raw, sshp)
                      .reshape(opr::Concat::make({batches, r, a.make_scalar(1)},
                                                 0))
                      .broadcast(brr);
    auto grad_sf = reshape_anybatch(grad_s_raw, sshp)
                           .reshape(opr::Concat::make(
                                   {batches, r, a.make_scalar(1)}, 0))
                           .broadcast(brr);
    auto s = I_r * sf;
    auto grad_s = I_r * grad_sf;
    auto s_inv = 1 / (s + filter_matrix) - filter_matrix;
    auto s_rhs = sf * sf, s_mid = trans(s_rhs) - s_rhs,
         s_avoid_nan = s_mid + I_r, f = filter_matrix / s_avoid_nan;
    auto I_m = opr::Eye::make(m, {0, DTypeEnum::Float32})
                       .reshape(opr::Concat::make({a.make_scalar(1), m, m}, 0))
                       .broadcast(opr::Concat::make({batches, m, m}, 0)),
         I_n = opr::Eye::make(n, {0, DTypeEnum::Float32})
                       .reshape(opr::Concat::make({a.make_scalar(1), n, n}, 0))
                       .broadcast(opr::Concat::make({batches, n, n}, 0));
    auto ut_du = matmuls(u, grad_u, param10),
         vt_dv = matmuls(v, grad_v, param10);
    auto ret =
            matmuls(matmuls(matmuls(u, f * (ut_du - trans(ut_du))), s,
                            param00) +
                            matmuls(matmuls(I_m - matmul(u, u, param01),
                                            grad_u),
                                    s_inv),
                    v, param01) +
            matmuls(matmuls(u, I_r * grad_s), v, param01) +
            matmuls(u, matmuls(matmuls(s, f * (vt_dv - trans(vt_dv)), param00),
                               v, param01) +
                               matmuls(matmuls(s_inv, grad_v, param01),
                                       I_n - matmul(v, v, param01)));
    return ret.reshape(a.symshape()).node();
}

SymbolVarArray SVD::make(const SymbolVar& src, const Param& param,
                         const OperatorNodeConfig& config) {
    auto&& out = src.node()
                         ->owner_graph()
                         ->insert_opr(std::make_unique<SVD>(src.node(), param,
                                                            config))
                         ->output();
    SymbolVarArray ret(out.size());
    for (size_t i = 0; i < ret.size(); i++) {
        ret[i] = out[i];
    }
    return ret;
}

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}