atlas_runtime_op.cpp 18.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
/**
 * \file src/opr/impl/atlas_runtime_op.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 */

#include "megbrain/opr/atlas_runtime_op.h"
#include <memory>
#include "megbrain/common.h"
#include "megbrain/graph/operator_node.h"
#include "megdnn/basic_types.h"
#include "megdnn/dtype.h"

#if MGB_ATLAS
#include "acl/acl_mdl.h"

using namespace mgb;
using namespace opr;

namespace {
/**
 * \brief get mgb shape from acl shape, batch from mgb
 */
TensorShape acl_shape_to_mgb_shape_for_output(aclmdlIODims acl_shape,
                                              size_t batch) {
    TensorShape ret;
    ret.ndim = acl_shape.dimCount;
    for (size_t i = 0; i < ret.ndim; ++i) {
        ret[i] = acl_shape.dims[i];
    }
    ret[0] = batch;
    return ret;
}

/**
 * \brief deduce the input shape from aclFormat and aipp config.
 *
 * \param acl_shape shape from om file
 * \param batch batchsize from mgb
 * \param enable_dynamic_batch True if set dynamic batch size
 * \param om_format layout format from om file
 * \param aipp_input_fmt input_format in static aipp config of om file
 */
TensorShape acl_shape_to_mgb_shape_for_input(
        aclmdlIODims acl_shape, size_t batch, bool enable_dynamic_batch,
        aclFormat om_format, AtlasRuntimeOpr::AippInputFormat aipp_input_fmt) {
    TensorShape ret;
    ret.ndim = acl_shape.dimCount;
    mgb_assert(ret.ndim == 4,
               "Unexpected ndim form aclmdlIODims expected 4, but got %zu",
               ret.ndim);
    for (size_t i = 0; i < ret.ndim; ++i) {
        ret[i] = acl_shape.dims[i];
    }
    if (enable_dynamic_batch) {
        mgb_assert(ret[0] == static_cast<size_t>(-1),
                   "batch size expected to be -1 when enable dynamic "
                   "batchsize, got: %zu\n",
                   ret[0]);
        ret[0] = batch;
    } else {
        mgb_assert(ret[0] == batch,
                   "batchsize mismatch if no dynamic batchsize enabled, "
                   "expected: %zu got: %zu\n",
                   ret[0], batch);
    }

    if (aipp_input_fmt != AtlasRuntimeOpr::AippInputFormat::NO_AIPP) {
        mgb_assert(om_format == ACL_FORMAT_NHWC,
                   "om format should be NHWC if enable aipp");
    }

    return ret;
}

DType acl_dtype_to_mgb_dtype(aclDataType data_type) {
    switch (data_type) {
        case ACL_UINT8:
            return dtype::Uint8();
        case ACL_FLOAT16:
#if !MEGDNN_DISABLE_FLOAT16
            return dtype::Float16();
#else
            mgb_throw(MegBrainError,
                      "Float16 support is disabled at compile time.");
#endif
        case ACL_FLOAT:
            return dtype::Float32();
        case ACL_INT8:
            return dtype::Int8();
        case ACL_INT16:
            return dtype::Int16();
        case ACL_INT32:
            return dtype::Int32();
        default:
            mgb_throw(MegBrainError,
                      "aclDataType %x is not supported by MegBrain.",
                      static_cast<int>(data_type));
    }
}

/**
 * \brief generate batch size which match the batch_choice
 */
SmallVector<size_t> gen_batch_vec(size_t origin_batch,
                                  const SmallVector<size_t>& batch_choices) {
    SmallVector<size_t> ret;
    size_t idx = 0;
    size_t nr_batch_choices = batch_choices.size();
    size_t batch = origin_batch;
    while (idx < nr_batch_choices) {
        size_t val = batch_choices[idx];
        while (batch >= batch_choices[idx]) {
            ret.push_back(val);
            batch -= val;
        }
        idx++;
    }
    mgb_assert(batch == 0,
               "Invalid batch size %zu, can not be generate by batch choices",
               origin_batch);

    return ret;
}

class PtrGetter {
public:
    PtrGetter(const VarNodeArray& vars) {
        for (auto&& var : vars) {
            m_ptrs.push_back(var->dev_tensor().raw_ptr());
            m_batch_in_bytes.push_back(var->layout().stride[0] *
                                       var->layout().dtype.size());
        }
    }

    std::pair<void*, size_t> get(size_t batch, size_t idx) {
        std::pair<void*, size_t> ret;
        ret.first = m_ptrs[idx];
        ret.second = batch * m_batch_in_bytes[idx];
        m_ptrs[idx] = reinterpret_cast<void*>(
                reinterpret_cast<uintptr_t>(ret.first) + ret.second);
        return ret;
    }

private:
    SmallVector<void*> m_ptrs;
    SmallVector<size_t> m_batch_in_bytes;
};

};  // namespace

/* ====================== AtlasRuntimeOpr ==================== */
MGB_DYN_TYPE_OBJ_FINAL_IMPL(AtlasRuntimeOpr);
AtlasRuntimeOpr::AtlasRuntimeOpr(SharedBuffer buf,
                                 const std::pair<uint32_t, aclmdlDesc*>& model,
                                 const VarNodeArray& inputs,
                                 const OperatorNodeConfig& config)
        : Super(inputs[0]->owner_graph(), config, "atlas_runtime", inputs),
          m_buffer{std::move(buf)},
          m_model_id{model.first},
          m_model_desc{model.second} {
    mgb_assert(
            inputs[0]->comp_node().device_type() == CompNode::DeviceType::ATLAS,
            "AtlasRuntimeOpr can only be used on atlas comp node; "
            "got %s",
            inputs[0]->comp_node().to_string().c_str());
    mgb_assert(m_buffer.data() != nullptr ||
               (m_model_id != INVALID_MODEL_ID && m_model_desc != nullptr));

    for (auto i : inputs) {
        add_input({i});
    }
    if (m_model_id == INVALID_MODEL_ID && m_model_desc == nullptr) {
        MGB_ATLAS_CHECK(aclmdlLoadFromMem(m_buffer.data(), m_buffer.size(),
                                          &m_model_id));
        m_model_desc = aclmdlCreateDesc();
        MGB_ATLAS_CHECK(aclmdlGetDesc(m_model_desc, m_model_id));
        m_is_model_holder = true;
    }

    //! aipp input format
    m_aipp_input_format = SmallVector<AippInputFormat>(inputs.size());
    aclAippInfo aipp_info;
    for (size_t i = 0; i < inputs.size(); ++i) {
        aclError acl_err = aclmdlGetFirstAippInfo(m_model_id, i, &aipp_info);
        if (ACL_ERROR_NONE == acl_err) {
            switch (aipp_info.inputFormat) {
                case ACL_YUV420SP_U8:
                    m_aipp_input_format[i] = AippInputFormat::YUV420SP_U8;
                    break;
                case ACL_RGB888_U8:
                    m_aipp_input_format[i] = AippInputFormat::RGB888_U8;
                    break;
                default:
                    mgb_throw(MegBrainError,
                              "Unsupported aclAippInputFormat for input %zu. ",
                              i);
            }
        } else if (ACL_ERROR_NOT_STATIC_AIPP == acl_err) {
            m_aipp_input_format[i] = AippInputFormat::NO_AIPP;
        } else {
            MGB_ATLAS_CHECK(acl_err);
        }
    }

    size_t dynamic_index;
    auto errcode = aclmdlGetInputIndexByName(
            m_model_desc, ACL_DYNAMIC_TENSOR_NAME, &dynamic_index);
    if (errcode == ACL_ERROR_NONE) {
        aclmdlHW hw_info;
        MGB_ATLAS_CHECK(
                aclmdlGetDynamicHW(m_model_desc, dynamic_index, &hw_info));
        mgb_assert(hw_info.hwCount == 0, "Currently not support dynamic HW");
    }

    //! dynamic batch size
    aclmdlBatch acl_batch;
    MGB_ATLAS_CHECK(aclmdlGetDynamicBatch(m_model_desc, &acl_batch));
    if (acl_batch.batchCount) {
        size_t dynamic_data_size;
        dynamic_data_size =
                aclmdlGetInputSizeByIndex(m_model_desc, dynamic_index);
        m_dyn_batch_tensor = DeviceTensorND(
                inputs[0]->comp_node(), {{dynamic_data_size}, dtype::Uint8()});

        for (size_t i = 0; i < acl_batch.batchCount; ++i) {
            m_dyn_batch_choices.push_back(
                    static_cast<size_t>(acl_batch.batch[i]));
        }
        std::sort(m_dyn_batch_choices.begin(), m_dyn_batch_choices.end(),
                  std::greater<>());
    }

    //! add output
    size_t nr_outputs = aclmdlGetNumOutputs(m_model_desc);
    using F = VarNode::Flag;
    if (nr_outputs == 1) {
        add_output(None);
    } else {
        for (size_t i = 0; i < nr_outputs; ++i) {
            add_output(ssprintf("o%zu", i));
        }
    }
    if (!m_dyn_batch_choices.empty()) {
        /**
         * \warning If enable dynamic batchsize, the memory of output
         * should be the largest be the size with the largest batch_size, so we
         * set the flag to SYS_MEM_ALLOC.
         */
        for (size_t i = 0; i < nr_outputs; ++i) {
257 258 259
            output(i)
                    ->add_flag(F::NO_SYS_MEM_ALLOC)
                    .add_flag(F::NO_MEM_RECLAIM);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
        }
    }
    add_equivalence_component<mgb::ScalarHash<const void*>>(m_buffer.data());
};

AtlasRuntimeOpr::~AtlasRuntimeOpr() {
    if (m_is_model_holder) {
        MGB_ATLAS_CHECK(aclmdlUnload(m_model_id));
        MGB_ATLAS_CHECK(aclmdlDestroyDesc(m_model_desc));
    }
}

void AtlasRuntimeOpr::scn_do_execute() {
    auto&& acl_env =
            CompNodeEnv::from_comp_node(input(0)->comp_node()).atlas_env();
    acl_env.activate();

    if (!m_dyn_batch_choices.empty()) {
        for (size_t i = 0; i < output().size(); i++) {
            auto output_size = aclmdlGetOutputSizeByIndex(m_model_desc, i);
            auto ovar = output(i);
281 282 283
            output_size = std::max<size_t>(
                    output_size,
                    ovar->dtype().size(ovar->shape().total_nr_elems()));
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
            ovar->shape_alloc(ovar->shape(), output_size);
        }
    }

    PtrGetter input_getter(input());
    PtrGetter output_getter(output());

    bool enable_dynamic_batch = !m_dyn_batch_choices.empty();
    size_t nr_inputs = aclmdlGetNumInputs(m_model_desc);
    size_t nr_outputs = aclmdlGetNumOutputs(m_model_desc);
    size_t input_batch = input(0)->layout()[0];

    if (enable_dynamic_batch) {
        mgb_assert(nr_inputs == input().size() + 1,
                   "nr inputs got from om model should be one more than got "
                   "from megbrain");
    }
    SmallVector<size_t> batches_each_run;
    if (enable_dynamic_batch) {
        batches_each_run = gen_batch_vec(input_batch, m_dyn_batch_choices);
    } else {
        batches_each_run.push_back(input_batch);
    }

    for (auto&& batch : batches_each_run) {
        //! prepare input
        auto model_inputs = aclmdlCreateDataset();
        mgb_assert(model_inputs != nullptr,
                   "failed to create atlas input dataset.");
        for (size_t i = 0; i < input().size(); i++) {
            auto value_pair = input_getter.get(batch, i);
            auto input_size = aclmdlGetInputSizeByIndex(m_model_desc, i);
316 317
            //! FIXME iff enable dynamic batchsize and dynamic aipp, the input
            //! size should be the size of aclmdlGetInputSizeByIndex.
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
            if (enable_dynamic_batch) {
                mgb_assert(input_size == value_pair.second / batch *
                                                 m_dyn_batch_choices[0],
                           "input %zu size mismatch, expected: %zu got: %zu", i,
                           input_size,
                           value_pair.second / batch *
                                   m_dyn_batch_choices[0]);
            }
            aclDataBuffer* input_db =
                    aclCreateDataBuffer(value_pair.first, value_pair.second);
            mgb_assert(input_db != nullptr,
                       "failed to create atlas input data buffer for input "
                       "%zu:%s.",
                       i, input(i)->cname());
            aclmdlAddDatasetBuffer(model_inputs, input_db);
        }
        //! append unit tensor for dynamic batch
        if (enable_dynamic_batch) {
            aclDataBuffer* input_db = aclCreateDataBuffer(
                    reinterpret_cast<void*>(m_dyn_batch_tensor.raw_ptr()),
                    m_dyn_batch_tensor.layout().span().dist_byte());
            mgb_assert(input_db != nullptr,
                       "failed to create atlas input data buffer for dynamic "
                       "batch tensor.");
            MGB_ATLAS_CHECK(aclmdlAddDatasetBuffer(model_inputs, input_db));

            MGB_ATLAS_CHECK(aclmdlSetDynamicBatchSize(
                    m_model_id, model_inputs, input().size(),
                    static_cast<uint64_t>(batch)));
        }

        //! prepare output
        auto model_outputs = aclmdlCreateDataset();
        mgb_assert(model_outputs != nullptr,
                   "failed to create atlas output dataset.");
        for (size_t i = 0; i < nr_outputs; i++) {
            auto value_pair = output_getter.get(batch, i);
355 356 357 358
            size_t output_size = value_pair.second;
            if (enable_dynamic_batch) {
                output_size = aclmdlGetOutputSizeByIndex(m_model_desc, i);
            }
359
            aclDataBuffer* output_db =
360
                    aclCreateDataBuffer(value_pair.first, output_size);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
            mgb_assert(output_db != nullptr,
                       "failed to create atlas output data buffer for output "
                       "%zu:%s.",
                       i, output(i)->cname());
            aclmdlAddDatasetBuffer(model_outputs, output_db);
        }
        MGB_ATLAS_CHECK(aclmdlExecute(m_model_id, model_inputs, model_outputs));

        for (size_t i = 0; i < nr_inputs; ++i) {
            aclDataBuffer* db_ptr = aclmdlGetDatasetBuffer(model_inputs, i);
            MGB_ATLAS_CHECK(aclDestroyDataBuffer(db_ptr));
        }
        for (size_t i = 0; i < nr_outputs; ++i) {
            aclDataBuffer* db_ptr = aclmdlGetDatasetBuffer(model_outputs, i);
            MGB_ATLAS_CHECK(aclDestroyDataBuffer(db_ptr));
        }
        MGB_ATLAS_CHECK(aclmdlDestroyDataset(model_inputs));
        MGB_ATLAS_CHECK(aclmdlDestroyDataset(model_outputs));
    }
}

void AtlasRuntimeOpr::get_output_var_shape(const TensorShapeArray& inp_shape,
                                           TensorShapeArray& out_shape) const {
    size_t nr_inputs = aclmdlGetNumInputs(m_model_desc);
    size_t batch_size = inp_shape[0][0];
    //! enable dynamic batchsize
    if (!m_dyn_batch_choices.empty()) {
        mgb_assert(!gen_batch_vec(batch_size, m_dyn_batch_choices).empty());
        mgb_assert(nr_inputs == inp_shape.size() + 1,
                   "nr inputs got from om model should be one more than got "
                   "from megbrain");
    }
    for (size_t i = 0; i < inp_shape.size(); ++i) {
        aclmdlIODims input_dims;
        MGB_ATLAS_CHECK(aclmdlGetInputDimsV2(m_model_desc, i, &input_dims));
        auto om_format = aclmdlGetInputFormat(m_model_desc, i);
        TensorShape shape_from_om = acl_shape_to_mgb_shape_for_input(
                input_dims, batch_size, !m_dyn_batch_choices.empty(), om_format,
                m_aipp_input_format[i]);
        mgb_assert(shape_from_om.eq_shape(inp_shape[i]),
                   "shape mismatch of input %zu, expected: %s got: %s", i,
                   shape_from_om.to_string().c_str(),
                   inp_shape[i].to_string().c_str());
    }

    for (size_t i = 0; i < out_shape.size(); ++i) {
        aclmdlIODims output_dims;
        MGB_ATLAS_CHECK(aclmdlGetOutputDims(m_model_desc, i, &output_dims));
        out_shape[i] =
                acl_shape_to_mgb_shape_for_output(output_dims, batch_size);
    }
}

void AtlasRuntimeOpr::add_input_layout_constraint() {
    //! default contiguous
    for (auto i : input()) {
        i->add_layout_constraint_contiguous();
    }
}

void AtlasRuntimeOpr::init_output_dtype() {
    DType dt_acl, dt_input;
    for (size_t i = 0; i < input().size(); ++i) {
        dt_acl =
                acl_dtype_to_mgb_dtype(aclmdlGetInputDataType(m_model_desc, i));
        dt_input = input(i)->dtype();
        mgb_assert(dt_acl.valid() && dt_input.valid() &&
                           dt_acl.enumv() == dt_input.enumv(),
                   "dtype mismatch of input %zu: expected %s, "
                   "got %s",
                   i, dt_acl.name(), dt_input.name());
    }

    for (size_t i = 0; i < output().size(); ++i) {
        dt_acl = acl_dtype_to_mgb_dtype(
                aclmdlGetOutputDataType(m_model_desc, i));
        mgb_assert(dt_acl.valid(),
                   "output dtype checking failed: invalid dtype returned.");
        if (dt_acl.enumv() == DTypeEnum::QuantizedS8) {
            mgb_assert(output(i)->dtype().valid(),
                       "user should specify scale of output tensor of "
                       "AtlasRuntimeOpr.");
        }
        if (!output(i)->dtype().valid())
            output(i)->dtype(dt_acl);
    }
}

SymbolVarArray AtlasRuntimeOpr::make(SharedBuffer buf,
                                     const SymbolVarArray& src,
                                     const OperatorNodeConfig& config) {
    VarNodeArray var_node_array = cg::to_var_node_array(src);
    auto atlas_runtime_opr = std::make_unique<AtlasRuntimeOpr>(
            std::move(buf),
            std::pair<uint32_t, aclmdlDesc*>{INVALID_MODEL_ID, nullptr},
            var_node_array, config);
    auto ret = cg::to_symbol_var_array(
            src[0].node()
                    ->owner_graph()
                    ->insert_opr(std::move(atlas_runtime_opr))
                    ->output());
    return ret;
}

SymbolVarArray AtlasRuntimeOpr::make(const void* buf, size_t size,
                                     const SymbolVarArray& src,
                                     const OperatorNodeConfig& config) {
    mgb_throw_if(!CompNode::get_device_count(CompNode::DeviceType::ATLAS),
                 SystemError,
                 "can not create AtlasRuntimeOpr when atlas is not "
                 "available");
    std::shared_ptr<uint8_t> shptr{new uint8_t[size],
                                   [](uint8_t* p) { delete[] p; }};
    memcpy(shptr.get(), buf, size);
    SharedBuffer buffer{std::move(shptr), size};
    return make(std::move(buffer), src, config);
}

SymbolVarArray AtlasRuntimeOpr::make(
        const SharedBuffer buf, const std::pair<uint32_t, aclmdlDesc*>& model,
        const SymbolVarArray& src, const OperatorNodeConfig& config) {
    VarNodeArray var_node_array = cg::to_var_node_array(src);
    auto atlas_runtime_opr = std::make_unique<AtlasRuntimeOpr>(
            buf, model, var_node_array, config);
    auto ret = cg::to_symbol_var_array(
            src[0].node()
                    ->owner_graph()
                    ->insert_opr(std::move(atlas_runtime_opr))
                    ->output());
    return ret;
}

constexpr uint32_t AtlasRuntimeOpr::INVALID_MODEL_ID;

#endif  // MGB_atlas

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}