matrix_mul.cpp 9.9 KB
Newer Older
1 2 3 4 5 6 7 8
/**
 * \file dnn/test/x86/matrix_mul.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 */
#include "test/x86/fixture.h"

#include "src/x86/utils.h"
#include "test/common/benchmarker.h"
#include "test/common/checker.h"
#include "test/common/matrix_mul.h"
#include "test/common/rng.h"
using namespace megdnn;
using namespace test;
using namespace megdnn::x86;

#if MEGDNN_X86_WITH_VNNI
TEST_F(X86, MATRIX_MUL_VNNI_8X8X32) {
    matrix_mul::check_matrix_mul(dtype::Int8{}, dtype::Int8{}, dtype::Int32{},
                                 handle(), "X86_INT8X8X32_VNNI");
}
#endif

30
#if MEGDNN_X86_WITH_MKL_DNN
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
TEST_F(X86, MATRIX_MUL_MKLDNN_8X8X32) {
    if (is_supported(SIMDType::VNNI)) {
        matrix_mul::check_matrix_mul(dtype::Int8{}, dtype::Int8{},
                                     dtype::Int32{}, handle(),
                                     "X86_INT8X8X32_MKLDNN");
    } else {
        std::cout << "can not do mkldnn matmul check for no vnni support"
                  << std::endl;
        matrix_mul::check_matrix_mul(dtype::Int8{}, dtype::Int8{},
                                     dtype::Int32{}, handle());
    }
}
#endif
//! FIXME: need to add tests of GEMV and QUINT8
TEST_F(X86, MATRIX_MUL_AVX2_8X8X32) {
    matrix_mul::check_matrix_mul(dtype::Int8{}, dtype::Int8{}, dtype::Int32{},
                                 handle(), "X86_INT8X8X32_AVX2_2X4X16");
    matrix_mul::check_matrix_mul(dtype::Int8{}, dtype::Int8{}, dtype::Int32{},
                                 handle(), "X86_INT8X8X32_AVX2_4X16X2");
}
51 52 53 54
TEST_F(X86, MATRIX_MUL_AVX2_8X8X16) {
    matrix_mul::check_matrix_mul(dtype::Int8{}, dtype::Int8{}, dtype::Int16{},
                                 handle(), "X86_INT8X8X16_AVX2");
}
55 56 57 58
TEST_F(X86, MATRIX_MUL_SSE_8X8X16) {
    matrix_mul::check_matrix_mul(dtype::Int8{}, dtype::Int8{}, dtype::Int16{},
                                 handle(), "X86_INT8X8X16_SSE");
}
59 60 61 62 63
TEST_F(X86, MATRIX_MUL_SSE_8X8X32) {
    matrix_mul::check_matrix_mul(dtype::Int8{}, dtype::Int8{}, dtype::Int32{},
                                 handle(), "X86_INT8X8X32_SSE_4X8X2");
}

64
#if MEGDNN_X86_WITH_MKL && SUPPORT_MKL_PACKED_GEMM
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
TEST_F(X86, MATRIX_MUL_MKL_PACKA) {
    matrix_mul::check_matrix_mul(dtype::Float32{}, dtype::Float32{},
                                 dtype::Float32{}, handle(),
                                 "X86_F32_MKL_PACKA");
}
#endif

TEST_F(X86, MATRIX_MUL_AVX2_MK8_8X8) {
    matrix_mul::check_matrix_mul(dtype::Float32{}, dtype::Float32{},
                                 dtype::Float32{}, handle(), "X86_F32MK8_8X8",
                                 param::MatrixMul::Format::MK8, 1);
}

#if MEGDNN_WITH_BENCHMARK

TEST_F(X86, BENCHMARK_MATRIX_MUL_AVX2_MK8_8X8) {
    auto args = matrix_mul::get_benchmark_matmul_mk_packed_args(8);
    matrix_mul::benchmark_with_contrast(
            handle(), args, dtype::Float32{}, dtype::Float32{},
            dtype::Float32{}, "X86_F32MK8_8X8", param::MatrixMul::Format::MK8,
            dtype::Float32{}, dtype::Float32{}, dtype::Float32{},
            "X86_F32_BLAS");
}

TEST_F(X86, BENCHMARK_MATRIX_MUL_8X8X32) {
    constexpr size_t RUNS = 50;
    auto rng = std::make_unique<UniformIntRNG>(-127, 127);
#if MEGDNN_X86_WITH_VNNI
    Benchmarker<MatrixMul> benchmarker_vnni(handle());
    benchmarker_vnni.set_times(RUNS)
            .set_dtype(0, dtype::Int8{})
            .set_dtype(1, dtype::Int8{})
            .set_dtype(2, dtype::Int32{})
            .set_display(false)
            .set_rng(0, rng.get())
            .set_rng(1, rng.get());
    benchmarker_vnni.set_before_exec_callback(
            AlgoChecker<MatrixMul>("X86_INT8X8X32_VNNI"));
#endif

105
#if MEGDNN_X86_WITH_MKL_DNN
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    Benchmarker<MatrixMul> benchmarker_mkldnn(handle());
    benchmarker_mkldnn.set_times(RUNS)
            .set_dtype(0, dtype::Int8{})
            .set_dtype(1, dtype::Int8{})
            .set_dtype(2, dtype::Int32{})
            .set_display(false)
            .set_rng(0, rng.get())
            .set_rng(1, rng.get());
    benchmarker_mkldnn.set_before_exec_callback(
            AlgoChecker<MatrixMul>("X86_INT8X8X32_MKLDNN"));
#endif
    Benchmarker<MatrixMul> benchmarker_avx2_4x16x2(handle());
    benchmarker_avx2_4x16x2.set_display(false)
            .set_times(RUNS)
            .set_dtype(0, dtype::Int8{})
            .set_dtype(1, dtype::Int8{})
            .set_dtype(2, dtype::Int32{})
            .set_rng(0, rng.get())
            .set_rng(1, rng.get());
    benchmarker_avx2_4x16x2.set_before_exec_callback(
            AlgoChecker<MatrixMul>("X86_INT8X8X32_AVX2_4X16X2"));

128 129 130 131 132 133 134 135 136 137 138
    Benchmarker<MatrixMul> benchmarker_avx2_4x16x2_8816(handle());
    benchmarker_avx2_4x16x2_8816.set_display(false)
            .set_times(RUNS)
            .set_dtype(0, dtype::Int8{})
            .set_dtype(1, dtype::Int8{})
            .set_dtype(2, dtype::Int16{})
            .set_rng(0, rng.get())
            .set_rng(1, rng.get());
    benchmarker_avx2_4x16x2_8816.set_before_exec_callback(
            AlgoChecker<MatrixMul>("X86_INT8X8X16_AVX2"));

139 140 141 142 143 144 145 146 147 148 149
    Benchmarker<MatrixMul> benchmarker_sse_4x8x2_8816(handle());
    benchmarker_sse_4x8x2_8816.set_display(false)
            .set_times(RUNS)
            .set_dtype(0, dtype::Int8{})
            .set_dtype(1, dtype::Int8{})
            .set_dtype(2, dtype::Int16{})
            .set_rng(0, rng.get())
            .set_rng(1, rng.get());
    benchmarker_sse_4x8x2_8816.set_before_exec_callback(
            AlgoChecker<MatrixMul>("X86_INT8X8X16_SSE"));

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    Benchmarker<MatrixMul> benchmarker_avx2_2x4x16(handle());
    benchmarker_avx2_2x4x16.set_display(false)
            .set_times(RUNS)
            .set_dtype(0, dtype::Int8{})
            .set_dtype(1, dtype::Int8{})
            .set_dtype(2, dtype::Int32{})
            .set_rng(0, rng.get())
            .set_rng(1, rng.get());
    benchmarker_avx2_2x4x16.set_before_exec_callback(
            AlgoChecker<MatrixMul>("X86_INT8X8X32_AVX2_2X4X16"));

    Benchmarker<MatrixMul> benchmarker_sse_4x8x2(handle());
    benchmarker_sse_4x8x2.set_display(false)
            .set_times(RUNS)
            .set_dtype(0, dtype::Int8{})
            .set_dtype(1, dtype::Int8{})
            .set_dtype(2, dtype::Int32{})
            .set_rng(0, rng.get())
            .set_rng(1, rng.get());
    benchmarker_sse_4x8x2.set_before_exec_callback(
            AlgoChecker<MatrixMul>("X86_INT8X8X32_SSE_4X8X2"));

    Benchmarker<MatrixMul> benchmarker_float(handle());
    benchmarker_float.set_display(false)
            .set_times(RUNS)
            .set_rng(0, rng.get())
            .set_rng(1, rng.get());
    benchmarker_float.set_before_exec_callback(
            AlgoChecker<MatrixMul>("X86_F32_BLAS"));

    auto run = [&](size_t M, size_t N, size_t K) {
        const float computations = 2.f * M * K * N * 1e-6;
        std::cout << "run : {" << M << "," << N << "," << K << "} ";
        auto float_used = benchmarker_float.exec({{M, K}, {K, N}, {}}) / RUNS;
        std::cout << "float: " << float_used << " ms, "
                  << computations / float_used << " Gflops, ";

#if MEGDNN_X86_WITH_VNNI
        if (is_supported(SIMDType::VNNI)) {
            auto vnni_used = benchmarker_vnni.exec({{M, K}, {K, N}, {}}) / RUNS;
            std::cout << "vnni: " << vnni_used << " ms, "
                      << computations / vnni_used << " Gflops, "
                      << "speed_up " << float_used / vnni_used << ", ";
        }
#endif

196
#if MEGDNN_X86_WITH_MKL_DNN
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        if (is_supported(SIMDType::VNNI)) {
            auto mkldnn_used =
                    benchmarker_mkldnn.exec({{M, K}, {K, N}, {}}) / RUNS;
            std::cout << "mkldnn: " << mkldnn_used << " ms, "
                      << computations / mkldnn_used << " Gflops, "
                      << "speed_up " << float_used / mkldnn_used << ", ";
        }

#endif
        if (is_supported(SIMDType::AVX2)) {
            auto avx2_used_4x16x2 =
                    benchmarker_avx2_4x16x2.exec({{M, K}, {K, N}, {}}) / RUNS;
            auto avx2_used_2x4x16 =
                    benchmarker_avx2_2x4x16.exec({{M, K}, {K, N}, {}}) / RUNS;
            std::cout << "avx2_k2: " << avx2_used_4x16x2
                      << " ms, k2 throughput "
                      << computations / avx2_used_4x16x2 << " Gflops, "
                      << "k2_speed_up " << float_used / avx2_used_4x16x2
                      << ", k16_speed_up " << float_used / avx2_used_2x4x16
                      << ",";
217 218 219 220 221 222
            auto avx2_used_4x16x2_8816 =
                    benchmarker_avx2_4x16x2_8816.exec({{M, K}, {K, N}, {}}) /
                    RUNS;
            std::cout << "avx2_8816: " << avx2_used_4x16x2_8816
                      << " ms, 8816 throughput "
                      << computations / avx2_used_4x16x2_8816 << " Gflops,";
223 224 225 226 227 228 229
        }
        if (is_supported(SIMDType::SSE4_1)) {
            auto sse_used =
                    benchmarker_sse_4x8x2.exec({{M, K}, {K, N}, {}}) / RUNS;
            std::cout << "sse: " << sse_used << " ms, "
                      << computations / sse_used << " Gflops, "
                      << "speed_up " << float_used / sse_used << ", ";
230 231 232 233 234
            auto sse_used_8816 =
                    benchmarker_sse_4x8x2_8816.exec({{M, K}, {K, N}, {}}) /
                    RUNS;
            std::cout << "sse_8816: " << sse_used_8816 << " ms, "
                      << computations / sse_used_8816 << " Gflops, ";
235 236 237
        }
        std::cout << std::endl;
    };
238
    run(256, 256, 256);
239 240 241 242 243 244 245 246 247 248 249 250 251

    for (size_t M : {8, 64, 112, 256, 512}) {
        for (size_t K : {8, 16, 32, 64, 112, 256, 512}) {
            for (size_t N : {8, 64, 112, 256, 512}) {
                run(M, N, K);
            }
        }
    }
}

#endif  // MEGDNN_WITH_BENCHMARK

// vim: syntax=cpp.doxygen