opr_impl.h 15.8 KB
Newer Older
1 2 3 4 5 6 7 8
/**
 * \file dnn/src/fallback/conv_bias/opr_impl.h
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20
 */
#pragma once

#include "include/megdnn/thin/function.h"
#include "src/common/utils.h"
#include "src/fallback/conv_bias/common.h"
#include "src/fallback/convolution/opr_impl.h"
#include "src/fallback/matrix_mul/opr_impl.h"
#include "src/naive/conv_bias/opr_impl.h"

21 22
#include <unordered_map>

23 24 25
namespace megdnn {
namespace fallback {

26 27
/*!
 * \brief get the pack_size according to the format
28 29
 * Note  TODO: when remove format from param,
 *       may using like this "opr::param::format specify"
30
 * */
31
size_t pack_size(param::ConvBias::Format format);
32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/*!
 * \brief fallback conv bias forward impl
 *
 * Note: this operator class serves for multiple purposes:
 *
 *  1. canonizing conv reprs into NCBKernParam and NCBKernSizeParam, and
 *     subclasses should impl by overriding *_ncb methods
 *  2. providing a default impl for group conv by calling ncb_1g* methods
 *  3. providing a conv impl faster than naive under some cases
 *  4. providing a default impl for choosing heuristic algorithm, by using the
 *     first algo that fits the workspace limit
 */
class ConvBiasImpl : public naive::ConvBiasForwardImpl {
public:
    using naive::ConvBiasForwardImpl::ConvBiasForwardImpl;
    using AlgoSelectionStrategy = detail::AlgoSelectionStrategy;
49
    using AlgoDataType = detail::AlgoDataType;
50 51 52 53

    //! implemented by exec_with_ncb_kern()
    void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
              _megdnn_tensor_in bias, _megdnn_tensor_in z,
54 55
              _megdnn_tensor_out dst, const PreprocessedFilter*,
              _megdnn_workspace workspace) override;
56
    bool is_thread_safe() const override { return true; }
57

58 59
    void exec_preprocess(const TensorLayout& src_layout,
                         _megdnn_tensor_in filter,
60
                         _megdnn_tensor_in bias,
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
                         const TensorLayout& z_layout,
                         const TensorLayout& dst_layout,
                         PreprocessedFilter* preprocessed_filter,
                         _megdnn_workspace workspace) override;

    SmallVector<TensorLayout> deduce_preprocessed_filter_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z,
            const TensorLayout& dst) override;

    size_t get_preprocess_workspace_in_bytes(const TensorLayout& src,
                                             const TensorLayout& filter,
                                             const TensorLayout& bias,
                                             const TensorLayout& z,
                                             const TensorLayout& dst) override;

77 78 79 80 81
    //! implemented by get_workspace_with_ncb()
    size_t get_workspace_in_bytes(const TensorLayout& src,
                                  const TensorLayout& filter,
                                  const TensorLayout& bias,
                                  const TensorLayout& z,
82 83
                                  const TensorLayout& dst,
                                  const PreprocessedFilter*) override;
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

    //! implemented by get_all_algorithms_with_ncb()
    std::vector<Algorithm*> get_all_algorithms(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z,
            const TensorLayout& dst) override;

    //! implemented by get_algorithm_heuristic_with_ncb()
    Algorithm* get_algorithm_heuristic(const TensorLayout& src,
                                       const TensorLayout& filter,
                                       const TensorLayout& bias,
                                       const TensorLayout& z,
                                       const TensorLayout& dst,
                                       size_t workspace_limit_in_bytes,
                                       bool reproducible) override;

100 101


102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    //! size param for kernels with non-contiguous batch
    struct NCBKernSizeParam : ConvolutionImpl::NCBKernSizeParam {
        NCBKernSizeParam() = default;
        NCBKernSizeParam(const ConvolutionImpl::NCBKernSizeParam& param,
                         DType bias_type, ptrdiff_t bias_bs, BiasMode bias_mode,
                         Param::NonlineMode nonlineMode)
                : ConvolutionImpl::NCBKernSizeParam(param),
                  bias_type{bias_type},
                  bias_bs{bias_bs},
                  bias_mode{bias_mode},
                  nonlineMode{nonlineMode} {}
        DType bias_type;
        //! stride for batch of bias
        ptrdiff_t bias_bs;
        BiasMode bias_mode;
        Param::NonlineMode nonlineMode;
    };

    //! memory param for kernels with non-contiguous batch
    struct NCBKernParam : public NCBKernSizeParam {
        NCBKernParam() = default;
        const void* src_ptr;
        const void* filter_ptr;
        const void* bias_ptr;
        void* dst_ptr;
        void* workspace_ptr;
        size_t workspace_size;

        template <typename T>
        const T* src() const {
            src_type.assert_is_compatible_ctype<T>();
            return static_cast<const T*>(src_ptr);
        }
135 136 137 138 139 140 141 142 143 144 145 146 147 148
        //! when format is nchwxx, multi  channel will pack into one
        //! chnannel_pack_id. pack_channel_size is the number of packed channel
        //! when format is nchwxx and channel wise, multi group will pack into
        //! one group_pack_id. group_pack_size is the number of packed group
        //! together, like weight shape is {g/8, 1, 1, Fh, Fw, 8}
        template <typename T>
        const T* src(size_t batch_id, size_t group_pack_id,
                     size_t channel_pack_id = 0, size_t group_pack_size = 1,
                     size_t channel_pack_size = 1) const;

        template <typename T>
        const T* bias(size_t batch_id, size_t group_pack_id,
                      size_t channel_pack_id = 0, size_t group_pack_size = 1,
                      size_t channel_pack_size = 1) const;
149

150
        template <typename T>
151 152 153 154 155 156 157 158 159 160
        T* dst(size_t batch_id, size_t group_pack_id,
               size_t channel_pack_id = 0, size_t group_pack_size = 1,
               size_t channel_pack_size = 1) const;

        //! when format is nchwxx and channel wise, multi group will pack into
        //! one group_pack_id. group_pack_size is the number of packed group
        //! together, like weight shape is {g/8, 1, 1, Fh, Fw, 8}
        template <typename T>
        const T* filter(size_t group_pack_id,
                        size_t pack_group_size = 1_z) const;
161

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
        template <typename T>
        const T* filter() const {
            filter_type.assert_is_compatible_ctype<T>();
            return static_cast<const T*>(filter_ptr);
        }

        template <typename T>
        const T* bias() const {
            bias_type.assert_is_compatible_ctype<T>();
            return static_cast<const T*>(bias_ptr);
        }

        template <typename T>
        T* dst() const {
            dst_type.assert_is_compatible_ctype<T>();
            return static_cast<T*>(dst_ptr);
        }

        template <typename T>
        T* workspace() const {
            return static_cast<T*>(workspace_ptr);
        }
    };
    /**
     * \brief Kernel run time id, This information is used for getting the work
     * data
     */
    struct NCBKernIndex {
        size_t thread_id = 0;  //!< Thread id
        CpuNDRange ndrange_id;
    };

    //! move arm_common to fallback
    virtual bool is_matmul_quantized_prefer(
196
            const ConvBiasImpl::NCBKernSizeParam& ncb_param) const {
197 198 199 200 201 202 203 204 205 206 207 208 209
        MEGDNN_MARK_USED_VAR(ncb_param);
        return true;
    };

    using ncb_kern_t = thin_function<void(const NCBKernParam& param,
                                          const NCBKernIndex& ncb_index)>;
    struct NCBKern {
        ncb_kern_t kern;  //!< conv kern parallel ptr
        CpuNDRange global_size;
    };

    class AlgoBase : public Algorithm {
    public:
210 211 212
        AlgoBase() : Algorithm() {
            m_handle_type = Handle::HandleType::FALLBACK;
        }
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

        enum class AlgoType : uint32_t {
            //! fallback
            FB_NAIVE = 1 << 0,
            FB_WINOGRAD_F32,
            FB_WINOGRAD_4X4_F32,
            FB_WINOGRAD_QS8,
            FB_WINOGRAD_8X8_QS8,
            FB_CONV1x1,
            FB_CONV1x1_GEMV,
            FB_IM2COL,

#if MEGDNN_X86
            X86_DIRECT = 1 << 8,
            X86_DIRECT_STRD2,
            X86_WINOGRAD_F63_8x8_F32,
            X86_WINOGRAD_F23_8x8_F32,
            X86_MKLDNN,
            X86_CHANWISE_AVX2_STRD1_QINT8,
            X86_CHANWISE_AVX2_STRD2_QINT8,
            X86_DIRECT_AVX2_STRD1_INT8,
            X86_DIRECT_AVX2_STRD2_INT8,
            X86_MKLDNN_QINT8,
            X86_MKLDNN_MATMUL_QINT8,
#elif MEGDNN_AARCH64 || MEGDNN_ARMV7
            ARM_COMMON_WINOGRAD_F23_FP16 = 1 << 8,
            ARM_COMMON_WINOGRAD_F45_FP16,
            ARM_COMMON_WINOGRAD_F63_FP16,
            ARM_COMMON_WINOGRAD_F23_8X8_FP16,
            ARM_COMMON_DIRECT_FP16,
            ARM_COMMON_DIRECT_STRD1_FP16,
            ARM_COMMON_WINOGRAD_F23_4X4_FP32,
            ARM_COMMON_WINOGRAD_F63_FP32,
            ARM_COMMON_WINOGRAD_F63_4X4_FP32,
            ARM_COMMON_WINOGRAD_F54_FP32,
            ARM_COMMON_WINOGRAD_F45_FP32,
            ARM_COMMON_WINOGRAD_F23_4X4_NCHW44_F32,
            ARM_COMMON_WINOGRAD_F63_4X4_NCHW44_F32,
            ARM_COMMON_WINOGRAD_F73_4X4_NCHW44_F32,
            ARM_COMMON_DIRECT_FP32,
            ARM_COMMON_DIRECT_STRD1_FP32,
            ARM_COMMON_DIRECT_STRD2_FP32,
            ARM_COMMON_DIRECT_NCHW44_FP32,
            ARM_COMMON_DIRECT_NCHW_NCHW44_FP32,
            ARM_COMMON_CHWNWISE_NCHW44_F32,
            ARM_COMMON_DIRECT_STRD1_S8,
            ARM_COMMON_DIRECT_STRD2_S8,
            ARM_COMMON_DIRECT_NCHW44,
            ARM_COMMON_DIRECT_NCHW_NCHW44_S8,
            ARM_COMMON_CHANWISE_STRD1_NCHW44_S8,
            ARM_COMMON_CHANWISE_STRD2_NCHW44_S8,
            ARM_COMMON_DIRECT_NCHW_NCHW44_DOT_S8,
            ARM_COMMON_DIRECT_STRD1_DOT_S8,
            ARM_COMMON_DIRECT_STRD2_DOT_S8,
            ARM_COMMON_DIRECT_NCHW44_DOT_S8,
            ARM_COMMON_WINOGRAD_F23_8X8_S8,
            ARM_COMMON_WINOGRAD_F23_8X8_NCHW44_S8CF32,
            ARM_COMMON_WINOGRAD_F23_8X8_NCHW44_S8,
            ARM_COMMON_DIRECT_INT8X8X16,
            ARM_COMMON_DIRECT_NCHW44_INT8X8X16,
            ARM_COMMON_DIRECT_STRD2_INT8X8X16,
            ARM_COMMON_DIRECT_STRD2_F2_INT8X8X16,
            ARM_COMMON_CHWNWISE_STRD1_STRD2_NCHW44_INT8X8X16,
            ARM_COMMON_DIRECT_NCHW_NCHW44_INT8X8X16,
            ARM_COMMON_DIRECT_STRD1_QU8,
            ARM_COMMON_DIRECT_STRD2_QU8,
            ARM_COMMON_DIRECT_STRD1_DOT_QU8,
            ARM_COMMON_DIRECT_STRD2_DOT_QU8,
#if MEGDNN_AARCH64
            AARCH64_DIRECT_STRD2_FP16,
            AARCH64_DIRECT_STRD2_FP32,
            AARCH64_MATMUL_S8,
            AARCH64_MATMUL_QU8,
#else
            ARMV7_MATMUL_S8,
            ARMV7_MATMUL_QU8,
#endif // MEGDNN_AARCH64
#endif
        };

293 294
        virtual ~AlgoBase() = default;
        virtual bool usable(
295
                const NCBKernSizeParam& param,
296
                AlgoSelectionStrategy algo_selection_strategy) const = 0;
297
        virtual size_t get_workspace(const NCBKernSizeParam& param) const = 0;
298 299

        virtual SmallVector<NCBKern> dispatch_kerns(
300
                const NCBKernSizeParam& param) const = 0;
301

302
        virtual SmallVector<NCBKern> dispatch_preprocess_kerns(
303
                const NCBKernSizeParam&) const {
304 305 306 307 308
            return {};
        };

        //! get the layouts of weight_prerocess dst
        virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout(
309
                const NCBKernSizeParam&) const {
310 311 312 313
            return {};
        };

        //! get the workspace when weight_prerocess
314
        virtual size_t get_preprocess_workspace(const NCBKernSizeParam&) const {
315 316 317
            return 0_z;
        };

318 319
        //! Temporarily used to identify whether the matmul algorithm is
        //! is_preferred.
320
        virtual bool is_preferred(const NCBKernSizeParam&) const {
321 322
            return false;
        }
323
        bool usable_reproducible(const NCBKernSizeParam& param,
324 325 326
                                 AlgoSelectionStrategy algo_selection_strategy,
                                 bool reproducible = true) const {
            return (!reproducible || is_reproducible()) &&
327
                   usable(param, algo_selection_strategy);
328
        }
329 330 331

        //! get the type of the algo
        virtual ConvAlgoTypePack get_algo_type() const = 0;
332
        using Mapper = std::unordered_map<AlgorithmDesc, AlgoBase*>;
333 334
    };

335
    using AlgoMapper = AlgoBase::Mapper;
336 337 338
    /**
     * \brief get all the algorithm for the opr.
     */
339
    virtual SmallVector<AlgoBase*> get_all_packed_algo();
340

341 342 343 344 345 346 347 348 349 350 351
    /**
     * \brief select algo according to input algo type
     */
    SmallVector<AlgoBase*> select_algo_type(ConvAlgoTypePack algo_type);

    /**
     * \brief suggest algo category according to the param
     */
    virtual SmallVector<AlgoCategory> suggest_algo_category_order(
            const NCBKernSizeParam& param) const;

352 353 354 355
protected:
    virtual void exec_with_ncb_kern(const NCBKernParam& param,
                                    ConvBiasImpl::Algorithm* algo);

356 357 358
    virtual void exec_preprocess_with_ncb_kern(const NCBKernParam& param,
                                               Algorithm* algo);

359 360 361 362 363 364 365 366 367 368 369 370
    virtual std::vector<Algorithm*> get_all_algorithms_with_ncb(
            const NCBKernSizeParam& param);

    virtual Algorithm* get_algorithm_heuristic_with_ncb(
            const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
            bool reproducible = false);

    const char* get_algorithm_set_name() const override;

private:
    class AlgoNaive;
    class AlgoIm2col;
371
    class AlgoConv1x1;
372
    class AlgoConv1x1Gemv;
373 374 375 376 377 378 379 380 381 382 383
    class AlgoWinogradF32;
    class AlgoWinogradF32_4x4;
    class AlgoWinogradQS8;
    class AlgoWinogradQS8_8x8;
    class AlgoPack;

    NCBKernSizeParam m_prev_selected_algo_sizep;
    Algorithm* m_prev_selected_algo = nullptr;

    bool is_naive_algo(ConvBiasImpl::Algorithm* algo);

384 385
    Algorithm* get_algo_from_desc(const AlgorithmDesc& desc) const;

386 387 388 389 390
    //! get algorithm set by user or by heuristic
    Algorithm* get_algorithm(
            const NCBKernSizeParam& param,
            size_t workspace_size = std::numeric_limits<size_t>::max());

391 392 393 394 395 396 397 398 399 400
    NCBKernSizeParam make_ncb_kern_size_param(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& dst,
            const PreprocessedFilter* preprocessed_filter);

    NCBKernParam make_ncb_kern_param(
            _megdnn_tensor_in src, _megdnn_tensor_in filter,
            _megdnn_tensor_in bias, _megdnn_tensor_out dst,
            _megdnn_workspace workspace,
            const PreprocessedFilter* preprocessed_filter);
401 402

    static const AlgoPack& algo_pack();
403 404
};

405 406 407 408 409
inline bool is_enable_filter_preprocess(
        const ConvBiasImpl::NCBKernSizeParam& param) {
    return param.preprocessed_filter &&
           param.preprocessed_filter->tensors.size() >= 1;
}
410 411 412 413 414 415 416 417 418 419 420 421
}  // namespace fallback
}  // namespace megdnn

//! unpack NCBKernSizeParam into local variables (N, IC, IH, IW, ...)
#define UNPACK_CONV_NCB_KERN_SIZES(_p)                                       \
    auto N = _p.n, IC = _p.filter_meta.icpg, IH = _p.isz[0], IW = _p.isz[1], \
         OC = _p.filter_meta.ocpg, OH = _p.osz[0], OW = _p.osz[1],           \
         FH = _p.filter_meta.spatial[0], FW = _p.filter_meta.spatial[1],     \
         SH = _p.filter_meta.stride[0], SW = _p.filter_meta.stride[1],       \
         PH = _p.filter_meta.padding[0], PW = _p.filter_meta.padding[1]

// vim: syntax=cpp.doxygen