helper.h 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
/**
 * \file dnn/src/cuda/convolution3d/helper.h
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */
#pragma once

#include "./opr_impl.h"
#include "src/cuda/cudnn_wrapper.h"
#include "src/cuda/handle.h"
#include "src/common/utils.h"
#include "src/common/algo_chooser.h"
#include "src/cuda/utils.h"

namespace megdnn {
namespace cuda {
namespace convolution3d {
    using CanonizedFilterMeta = Convolution3DForward::CanonizedFilterMeta;

    //! conv size descriptor in the forward view
    struct ForwardSizeArgs {
        HandleImpl *handle;
        const TensorLayout *src_layout;
        CanonizedFilterMeta filter_meta;
        const TensorLayout *dst_layout;
        param::Convolution3D::DataType data_type;
    };

    //! whether cudnn is supported for a filter meta
    bool is_cudnn_supported(const ForwardSizeArgs &args);

    struct CUDNNForwardDescs {
        Tensor3DDesc src_desc, dst_desc;
        Filter3DDesc filter_desc;
        Conv3DDesc conv_desc;
        void set(const TensorLayout &src,
                const CanonizedFilterMeta &filter,
                const TensorLayout &dst,
                const param::Convolution3D &param)
        {
            src_desc.set(src);
            filter_desc.set(filter);
            dst_desc.set(dst);
            conv_desc.set(param, filter.group);
        }
    };

    struct CUDNNBwdDataDescs {
        Tensor3DDesc diff_desc, grad_desc;
        Filter3DDesc filter_desc;
        Conv3DDesc conv_desc;
        void set(const CanonizedFilterMeta &filter,
                const TensorLayout &diff,
                const TensorLayout &grad,
                const param::Convolution3D &param)
        {
            filter_desc.set(filter);
            diff_desc.set(diff);
            grad_desc.set(grad);
            conv_desc.set(param, filter.group);
        }
    };

    struct CUDNNBwdFilterDescs {
        Tensor3DDesc diff_desc, src_desc;
        Filter3DDesc grad_desc;
        Conv3DDesc conv_desc;
        void set(const TensorLayout &src,
                const TensorLayout &diff,
                const CanonizedFilterMeta &grad,
                const param::Convolution3D &param)
        {
            src_desc.set(src);
            diff_desc.set(diff);
            grad_desc.set(grad);
            conv_desc.set(param, grad.group);
        }
    };

    /*!
     * \brief flip conv filter
     *
     * Flip conv filter pointed by \p raw_ptr, store result in workspace, and
     * change \p raw_ptr to workspace.
     */
    void flip_filter(const ForwardSizeArgs &args,
            const Workspace &workspace, void *&raw_ptr);

    inline bool cudnn_get_convolution_fwd_algo_helper(
            cudnnHandle_t cudnn_handle, const cudnnTensorDescriptor_t x_desc,
            const cudnnFilterDescriptor_t w_desc,
            const cudnnConvolutionDescriptor_t conv_desc,
            const cudnnTensorDescriptor_t y_desc,
            size_t workspace_limit_in_bytes, cudnnConvolutionFwdAlgo_t* algo,
            bool reproducible) {
        MEGDNN_MARK_USED_VAR(reproducible);
#if CUDNN_MAJOR >= 7
        int algo_max_count = 0;
        cudnn_check(cudnnGetConvolutionForwardAlgorithmMaxCount(
                cudnn_handle, &algo_max_count));
        SmallVector<cudnnConvolutionFwdAlgoPerf_t> algo_perf(algo_max_count);
        int algo_count = 0;
        cudnn_check(cudnnGetConvolutionForwardAlgorithm_v7(
                cudnn_handle, x_desc, w_desc, conv_desc, y_desc, algo_max_count,
                &algo_count, algo_perf.data()));
        for (int i = 0; i < algo_count; ++i) {
            if (algo_perf[i].algo ==
                cudnnConvolutionFwdAlgo_t::
                        CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING)
                continue;
            size_t workspace_size = 0;
            cudnn_check(cudnnGetConvolutionForwardWorkspaceSize(
                    cudnn_handle, x_desc, w_desc, conv_desc, y_desc,
                    algo_perf[i].algo, &workspace_size));
            if (workspace_size > workspace_limit_in_bytes) continue;
            if (!reproducible) {
                *algo = algo_perf[i].algo;
                return true;
            } else {
                if (algo_perf[i].determinism == CUDNN_DETERMINISTIC) {
                    *algo = algo_perf[i].algo;
                    return true;
                }
            }
        }
        return false;
#else
        cudnn_check(cudnnGetConvolutionForwardAlgorithm(
                cudnn_handle, x_desc, w_desc, conv_desc, y_desc,
                CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
                workspace_limit_in_bytes, algo));
        return true;
#endif
    }

    inline bool cudnn_get_convolution_bwd_data_algo_helper(
            cudnnHandle_t cudnn_handle, const cudnnFilterDescriptor_t w_desc,
            const cudnnTensorDescriptor_t dy_desc,
            const cudnnConvolutionDescriptor_t conv_desc,
            const cudnnTensorDescriptor_t dx_desc,
            size_t workspace_limit_in_bytes,
            cudnnConvolutionBwdDataAlgo_t* algo, bool reproducible) {
        MEGDNN_MARK_USED_VAR(reproducible);
#if CUDNN_MAJOR >= 7
        int algo_max_count = 0;
        cudnn_check(cudnnGetConvolutionBackwardDataAlgorithmMaxCount(
                cudnn_handle, &algo_max_count));
        SmallVector<cudnnConvolutionBwdDataAlgoPerf_t> algo_perf(
                algo_max_count);
        int algo_count = 0;
        cudnn_check(cudnnGetConvolutionBackwardDataAlgorithm_v7(
                cudnn_handle, w_desc, dy_desc, conv_desc, dx_desc,
                algo_max_count, &algo_count, algo_perf.data()));
        for (int i = 0; i < algo_count; ++i) {
            if (algo_perf[i].algo ==
                cudnnConvolutionBwdDataAlgo_t::
                        CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING)
                continue;
            size_t workspace_size = 0;
            cudnn_check(cudnnGetConvolutionBackwardDataWorkspaceSize(
                    cudnn_handle, w_desc, dy_desc, conv_desc, dx_desc,
                    algo_perf[i].algo, &workspace_size));
            if (workspace_size > workspace_limit_in_bytes) continue;
            if (!reproducible) {
                *algo = algo_perf[i].algo;
                return true;
            } else {
                if (algo_perf[i].determinism == CUDNN_DETERMINISTIC) {
                    *algo = algo_perf[i].algo;
                    return true;
                }
            }
        }
        return false;
#else
        cudnn_check(cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle,
                    w_desc, dy_desc, conv_desc, dx_desc,
                    CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                    workspace_limit_in_bytes,
                    algo));
        return true;
#endif
    }

    inline bool cudnn_get_convolution_bwd_filter_algo_helper(
            cudnnHandle_t cudnn_handle, const cudnnTensorDescriptor_t x_desc,
            const cudnnTensorDescriptor_t dy_desc,
            const cudnnConvolutionDescriptor_t conv_desc,
            const cudnnFilterDescriptor_t dw_desc,
            size_t workspace_limit_in_bytes,
            cudnnConvolutionBwdFilterAlgo_t* algo, bool reproducible) {
        MEGDNN_MARK_USED_VAR(reproducible);
#if CUDNN_MAJOR >= 7
        int algo_max_count = 0;
        cudnn_check(cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(
                cudnn_handle, &algo_max_count));
        SmallVector<cudnnConvolutionBwdFilterAlgoPerf_t> algo_perf(
                algo_max_count);
        int algo_count = 0;
        cudnn_check(cudnnGetConvolutionBackwardFilterAlgorithm_v7(
                cudnn_handle, x_desc, dy_desc, conv_desc, dw_desc,
                algo_max_count, &algo_count, algo_perf.data()));
        for (int i = 0; i < algo_count; ++i) {
            if (algo_perf[i].algo ==
                    cudnnConvolutionBwdFilterAlgo_t::CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING)
                continue;
            size_t workspace_size = 0;
            cudnn_check(cudnnGetConvolutionBackwardFilterWorkspaceSize(
                    cudnn_handle, x_desc, dy_desc, conv_desc, dw_desc,
                    algo_perf[i].algo, &workspace_size));
            if (workspace_size > workspace_limit_in_bytes) continue;
            if (!reproducible) {
                *algo = algo_perf[i].algo;
                return true;
            } else {
                if (algo_perf[i].determinism == CUDNN_DETERMINISTIC) {
                    *algo = algo_perf[i].algo;
                    return true;
                }
            }
        }
        return false;
#else
        cudnn_check(cudnnGetConvolutionBackwardFilterAlgorithm(
                cudnn_handle, x_desc, dy_desc, conv_desc, dw_desc,
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                workspace_limit_in_bytes, algo));
        return true;
#endif
    }


} // namespace convolution3d
} // namespace cuda
} // namespace megdnn

// vim: syntax=cpp.doxygen