physical_tensor.cpp 10.3 KB
Newer Older
1
/**
M
Megvii Engine Team 已提交
2 3
 * \file imperative/src/impl/physical_tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
4
 *
M
Megvii Engine Team 已提交
5
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
6
 *
M
Megvii Engine Team 已提交
7 8 9
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
10 11 12 13
 */

#include "megbrain/imperative.h"
#include "megbrain/imperative/blob_manager.h"
14
#include "./event_pool.h"
15 16 17 18 19 20 21 22 23 24
#include <mutex>

namespace mgb {
namespace imperative {

namespace {

class AsyncReleaser : public CompNodeDepedentObject {
    struct WaiterParam {
        CompNode cn;
25
        CompNode::Event* event;
26 27 28
        BlobPtr blob;
        HostTensorStorage::RawStorage storage;
    };
29 30 31 32 33 34 35 36 37 38 39 40
    class Waiter final : public AsyncQueueSC<WaiterParam, Waiter> {
        AsyncReleaser* m_par_releaser;

    public:
        Waiter(AsyncReleaser* releaser) : m_par_releaser(releaser) {}

        void process_one_task(WaiterParam& param) {
            if (param.event->finished()) {
                param.blob.reset();
                param.storage.reset();
                EventPool::without_timer().free(param.event);
                return;
41 42
            }

43 44 45 46
            using namespace std::literals;
            std::this_thread::sleep_for(1us);
            add_task(std::move(param));
        }
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    };
    Waiter m_waiter{this};

protected:
    std::shared_ptr<void> on_comp_node_finalize() override {
        m_waiter.wait_task_queue_empty();
        return {};
    }

public:
    static AsyncReleaser* inst() {
        static AsyncReleaser releaser;
        return &releaser;
    }

62
    ~AsyncReleaser() { m_waiter.wait_task_queue_empty(); }
63

64
    void add(BlobPtr blob, CompNode cn) { add(cn, std::move(blob), {}); }
65 66 67 68 69

    void add(const HostTensorND& hv) {
        add(hv.comp_node(), {}, hv.storage().raw_storage());
    }

70 71 72
    void add(CompNode cn, BlobPtr blob,
             HostTensorStorage::RawStorage storage = {}) {
        auto event = EventPool::without_timer().alloc(cn);
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        event->record();
        m_waiter.add_task({cn, event, std::move(blob), std::move(storage)});
    }
};

class CompNodeSyncManager : public CompNodeDepedentObject {
    ThinHashMap<Blob*, std::unique_ptr<CompNode::Event>> m_blob2event;
    std::mutex m_mtx;
private:
    static CompNodeSyncManager mgr;
public:
    std::shared_ptr<void> on_comp_node_finalize() override {
        MGB_LOCK_GUARD(m_mtx);
        m_blob2event.clear();
        return {};
    }

    static CompNodeSyncManager* inst() {
        return &mgr;
    }

    CompNode::Event* get_or_create_event(Blob* blob) {
        mgb_assert(!is_finalized());
        MGB_LOCK_GUARD(m_mtx);
        auto&& e = m_blob2event[blob];
        if (!e) {
            e = blob->comp_node().create_event();
        }
        return e.get();
    }

    void remove(Blob* blob) {
        MGB_LOCK_GUARD(m_mtx);
        m_blob2event.erase(blob);
    }
};
CompNodeSyncManager CompNodeSyncManager::mgr;

// Cache for small blobs
// 1. A blob has to be seen twice (within a window) to be eligible for cache
// 2. Cache eviction occurs when cache size reaches a threshold, in least frequently used order
class ConstTensorCache {
public:
    struct Entry {
        size_t hitcnt = 0;
        std::unique_ptr<dt_byte[]> data;
        size_t size;
        BlobPtr blob;

        Entry(const dt_byte* ptr, size_t size_, BlobPtr blob_)
                : data(new dt_byte[size_]), size(size_), blob(blob_) {
            memcpy(data.get(), ptr, size);
        }

        // does not check input
        bool match(const HostTensorND& hv) {
            return 0 == memcmp(data.get(), hv.raw_ptr(), hv.layout().span().high_byte);
        }
    };

    bool check(const HostTensorND& hv) {
        auto&& layout = hv.layout();
        auto&& span = layout.span();
        return hv.format().is_default() && !hv.empty() &&
            layout.is_contiguous() && span.low_byte == 0 &&
            span.high_byte <= max_bytes;
    }

    // hash storage; does not check input
    static uint64_t hash(const HostTensorND& hv) {
        auto&& span = hv.layout().span();
        return XXHash{}
            .update(hv.raw_ptr(), span.high_byte)
            .digest();
    }

    BlobPtr lookup(const HostTensorND& hv) {
        if (!check(hv)) {
            return {};
        }
        auto h = hash(hv);
        MGB_LOCK_GUARD(mtx);
        // lookup in g1
        auto it = g1.find(h);
        if (it != g1.end()) {
            if (!it->second.match(hv)) {
                mgb_log_warn("hash collision in const tensor cache");
                return {};
            }
            it->second.hitcnt += 1;
            return it->second.blob;
        }
        // lookup in g0
        if (!g0.extract(h) && !g0b.extract(h)) {
            maybe_collect_g0();
            g0.emplace(h);
            return {};
        }
        // add new entry to g1
        maybe_collect_g1();
        Entry entry(hv.raw_ptr(), hv.layout().span().high_byte, Tensor(hv).blob());
        it = g1.emplace_hint(it, h, std::move(entry));
        it->second.hitcnt += 1;
        return it->second.blob;
    }

    void clear() {
        MGB_LOCK_GUARD(mtx);
        g0.clear();
        g0b.clear();
        g1.clear();
    }

    std::mutex mtx;
    size_t hwm = 1024, lwm = 512, max_bytes = TensorShape::MAX_NDIM * 8, window = 65536;

private:
    void maybe_collect_g0() {
        if (g0.size() > window) {
            std::swap(g0, g0b);
            g0.clear();
        }
    }
    void maybe_collect_g1() {
        if (g1.size() <= hwm) return;

        using KV = std::pair<uint64_t, Entry>;
        std::vector<KV> tmp;
        tmp.reserve(g1.size());
        for (auto&& kv : g1) {
            tmp.emplace_back(kv.first, std::move(kv.second));
        }
        std::nth_element(tmp.begin(), tmp.begin() + lwm, tmp.end(), [](const KV& lhs, const KV& rhs) {
                return lhs.second.hitcnt > rhs.second.hitcnt;
            });
        g1.clear();
        for (auto&& kv : tmp) {
            kv.second.hitcnt = 0;
            g1.emplace(std::move(kv));
        }
    }
    std::unordered_set<uint64_t> g0, g0b;
    std::unordered_map<uint64_t, Entry> g1;
};

struct MultiCNConstTensorCache : CompNodeDepedentObject {
    std::mutex mtx;
    CompNode::UnorderedMap<ConstTensorCache> cn2cache;

    std::shared_ptr<void> on_comp_node_finalize() {
        MGB_LOCK_GUARD(mtx);
        cn2cache.clear();
        return {};
    }

    BlobPtr lookup(const HostTensorND& hv) {
        MGB_LOCK_GUARD(mtx);
        return cn2cache[hv.comp_node()].lookup(hv);
    }
};

MultiCNConstTensorCache const_tensor_cache;

236
}  // namespace
237 238

void EventDeleter::operator()(CompNode::Event* event) {
239
    EventPool::without_timer().free(event);
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
}

Blob::Blob(const DeviceTensorStorage& s):
    m_comp_node{s.comp_node()}, m_storage{s.raw_storage()},
    m_size{s.size()} {
    BlobManager::inst()->register_blob(this);
}

Blob::Blob(CompNode cn, size_t sz):
    m_comp_node{cn}, m_storage{}, m_size{sz} {
    BlobManager::inst()->register_blob(this);
}

Blob::~Blob() {
    BlobManager::inst()->unregister_blob(this);
    CompNodeSyncManager::inst()->remove(this);
}

const Blob::RawStorage& Blob::storage() {
    if (!m_storage) {
        BlobManager::inst()->alloc_with_defrag(this, m_size);
    }
    return m_storage;
}

Tensor::Tensor(BlobPtr blob, const TensorLayout& layout, size_t offset, const HostTensorND& hv)
        : m_layout(layout), m_blob(std::move(blob)), m_offset(offset), m_value(hv) {
}

Tensor::Tensor(const HostTensorND &hv)
    : Tensor(hv.layout(), hv.comp_node()) {
    m_value = hv;
    dev_tensor().copy_from_fixlayout(hv);
    // even though hv is saved in m_value, Tensor itself could be
    // released before copy completes
    AsyncReleaser::inst()->add(hv);
}

Tensor::Tensor(const DeviceTensorND &dv, const HostTensorND& hv) {
    if (!hv.empty()) {
        mgb_assert(dv.comp_node() == hv.comp_node());
        mgb_assert(dv.dtype() == hv.dtype());
        mgb_assert(dv.shape().eq_shape(hv.shape()));
        m_value = hv;
    }
    m_layout = dv.layout();
    m_blob = Blob::make(dv.storage());
    m_offset = 0;
}

Tensor::Tensor(const TensorLayout& layout, const CompNode& cn)
    : m_layout{layout}, m_blob{Blob::make(cn, layout.dtype.size(layout.total_nr_elems()))},
    m_offset{0} {}

Tensor::Tensor(const BlobPtr blob, const size_t offset, const TensorLayout& layout)
    : m_layout{layout}, m_blob{blob}, m_offset{offset} {}

TensorPtr Tensor::make(const HostTensorND& hv) {
    auto&& blob = const_tensor_cache.lookup(hv);
    if (blob) {
        return make(std::forward<decltype(blob)>(blob), hv.layout(), hv);
    }
    return std::make_shared<Tensor>(hv);
}

DeviceTensorND Tensor::dev_tensor() {
    mgb_assert(m_blob, "uninitialized tensor.");
    DeviceTensorStorage storage;
    storage.reset(m_blob->comp_node(), m_blob->size(), m_blob->storage());
    storage = storage.sub(m_offset);
    DeviceTensorND ret;
    ret.reset(storage, m_layout);
    return ret;
}

void Tensor::fetch_value() {
    MGB_LOCK_GUARD(m_mtx);
    if (m_value.empty()) {
        m_value.copy_from(dev_tensor());
319
        m_value_ready.reset(EventPool::without_timer().alloc(comp_node()));
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
        m_value_ready->record();
    }
}

bool Tensor::value_fetched() {
    MGB_LOCK_GUARD(m_mtx);
    return m_value.layout().ndim != 0;
}

const HostTensorND& Tensor::get_value() {
    fetch_value();
    if (m_value_ready) {
        m_value_ready->host_wait();
    }
    return m_value;
}

const HostTensorND* Tensor::try_get_value() {
    MGB_LOCK_GUARD(m_mtx);
    if (!m_value.empty() && (!m_value_ready || m_value_ready->finished())) {
        return &m_value;
    }
    return nullptr;
}

TensorPtr Tensor::make_scalar(DTypeScalar value, CompNode cn) {
    HostTensorND hv{cn, value.dtype()};
    hv.resize({1});
    memcpy(hv.raw_ptr(), value.storage(), value.dtype().size(1));
    return make(hv);
}

TensorPtr Tensor::sub(size_t offset, TensorShape shape) {
    TensorLayout layout(shape, m_layout.dtype);
    return Tensor::make(m_blob, offset + m_offset, layout);
}

void Tensor::add_release_callback(CompNode cn) {
    AsyncReleaser::inst()->add(m_blob, cn);
}

CompNode::Event* Tensor::get_or_create_event() {
    auto e = CompNodeSyncManager::inst()->get_or_create_event(m_blob.get());
    e->record();
    return e;
}

367 368
}  // namespace imperative
}  // namespace mgb
369 370

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}