batch_norm.cpp 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/**
 * \file src/opr/impl/dnn/batch_norm.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/opr/dnn/batch_norm.h"
#include "megbrain/opr/io.h"
#include "megbrain/graph/grad_impl.h"

#include "../internal/megdnn_opr_wrapper.inl"

using namespace mgb;
using namespace opr;

namespace mgb { namespace opr { namespace intl {
template<>
struct AutoAddWorkspaceNeedLimitGetter<megdnn::BNForward> {
    static constexpr bool val = true;
};

template<>
struct AutoAddWorkspaceNeedLimitGetter<megdnn::BNBackward> {
    static constexpr bool val = true;
};
} } } // mgb::opr::intl

MGB_DYN_TYPE_OBJ_FINAL_IMPL(BatchNormForward);

BatchNormForward::BatchNormForward(VarNode *x,
        VarNode *scale, VarNode *bias,
        VarNode *mean, VarNode *variance,
        const Param &param,
        const OperatorNodeConfig &config):
    Super{x->owner_graph(), config, "batch_norm",
          {x, scale, bias, mean, variance}}
{
43
    if(owner_graph()->options().no_force_inplace) {
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
        m_force_inplace = false;
    }

    if (m_force_inplace) {
        auto check_dest = [&](VarNode* dest) {
            auto dest_opr = dest->owner_opr();
            mgb_throw_if(!(dest_opr->same_type<SharedDeviceTensor>() ||
                    dest_opr->same_type<VolatileSharedDeviceTensor>()),
                    GraphError,
                    "mean and variance in BatchNorm must be SharedDeviceTensor "
                    "or VolatileSharedDeviceTensor; got %s{%s} actually",
                    dest_opr->cname(), dest_opr->dyn_typeinfo()->name);
        };
        check_dest(mean);
        check_dest(variance);
    }
60 61 62 63 64

    init_megdnn_opr(*this, param);

    add_input({x, scale, bias, mean, variance});

65 66 67 68
    if (m_force_inplace) {
        output(0)->
            set_fwd_in2out_writable_force(input(3)).
            add_flag(VarNode::Flag::NO_MEM_RECLAIM);
69

70 71 72 73
        output(1)->
            set_fwd_in2out_writable_force(input(4)).
            add_flag(VarNode::Flag::NO_MEM_RECLAIM);
    }
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
}

BatchNormForward::BatchNormForward(VarNode *x,
        VarNode *scale, VarNode *bias,
        const Param &param,
        const OperatorNodeConfig &config):
    Super{x->owner_graph(), config, "batch_norm",
          {x, scale, bias}}
{
    init_megdnn_opr(*this, param);

    add_input({x, scale, bias});
    auto mark_empty_var = [&](VarNode *var) {
        var->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE)
            .add_flag(VarNode::Flag::VOLATILE_CONTENT);
    };
    mark_empty_var(output(0));
    mark_empty_var(output(1));
}

SymbolVarArray BatchNormForward::make(SymbolVar x,
        SymbolVar scale, SymbolVar bias,
        SymbolVar mean, SymbolVar variance,
        const Param &param,
        const OperatorNodeConfig &config) {
    auto&& out = x.node()
                    ->owner_graph()
                    ->insert_opr(std::make_unique<BatchNormForward>(
                        x.node(), scale.node(), bias.node(),
                        mean.node(), variance.node(), param, config))
                    ->output();
    SymbolVarArray ret(out.size());
    for (size_t i = 0; i < ret.size(); i++) {
        ret[i] = out[i];
    }
    return ret;
}

SymbolVarArray BatchNormForward::make(SymbolVar x,
        SymbolVar scale, SymbolVar bias,
        const Param &param,
        const OperatorNodeConfig &config) {
    auto&& out = x.node()
                    ->owner_graph()
                    ->insert_opr(std::make_unique<BatchNormForward>(
                        x.node(), scale.node(), bias.node(),
                        param, config))
                    ->output();
    SymbolVarArray ret(out.size());
    for (size_t i = 0; i < ret.size(); i++) {
        ret[i] = out[i];
    }
    return ret;
}

cg::OperatorNodeBase::NodeProp*
BatchNormForward::do_make_node_prop() const {
    auto ret = Super::do_make_node_prop();
    if (input().size() == 5) {
        ret->add_flag(NodeProp::Flag::FORCE_UPDATE_INPUT_VAR);
    }
    return ret;
}

void BatchNormForward::scn_do_execute() {
    auto &&x = input(0)->dev_tensor();
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    auto &&y = output(4)->dev_tensor();
    mgb_assert(x.layout().is_contiguous() &&
               y.layout().is_contiguous());
    if (input().size() == 5) { // need running mean/variance
        auto &&o0 = output(0)->dev_tensor(),
             &&o1 = output(1)->dev_tensor(),
             &&i0 = input(3)->dev_tensor(),
             &&i1 = input(4)->dev_tensor();
        mgb_assert(o0.raw_ptr() && o1.raw_ptr()); // non-empty tensor
        mgb_assert(o0.comp_node() == i0.comp_node() &&
                   o1.comp_node() == i1.comp_node() &&
                   o0.layout().eq_layout(i0.layout()) &&
                   o1.layout().eq_layout(i1.layout()));
        if (!m_force_inplace) {
            if (o0.raw_ptr() != i0.raw_ptr()) {
                o0.copy_from_fixlayout(i0);
            }
            if (o1.raw_ptr() != i1.raw_ptr()) {
                o1.copy_from_fixlayout(i1);
            }
        } else {
            mgb_assert(o0.raw_ptr() == i0.raw_ptr()
                    && o1.raw_ptr() == i1.raw_ptr());
        }
    }
165 166 167 168 169 170
    auto scale = input(1)->dev_tensor().as_megdnn();
    auto bias = input(2)->dev_tensor().as_megdnn();
    auto mean = output(0)->dev_tensor().as_megdnn();
    auto variance = output(1)->dev_tensor().as_megdnn();
    auto save_mean = output(2)->dev_tensor().as_megdnn();
    auto save_variance = output(3)->dev_tensor().as_megdnn();
171
    auto workspace = intl::get_megdnn_workspace_from_var(output().back());
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    megdnn_opr()->exec(x.as_megdnn(), scale, bias, mean, variance,
        save_mean, save_variance, y.as_megdnn(), workspace);
}

void BatchNormForward::add_input_layout_constraint() {
    mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
}

void BatchNormForward::get_output_var_shape(
        const TensorShapeArray &inp_shape,
        TensorShapeArray &out_shape) const {
    size_t nr_inp = input().size();
    out_shape[4] = inp_shape[0];
    for (size_t i = 0; i < 4; ++ i) {
        out_shape[i] = inp_shape[1];
    }
    if (nr_inp == 3) {
        out_shape[0] = out_shape[1] = {0};
    }
}

size_t BatchNormForward::get_workspace_size_bytes(
        const TensorShapeArray &input_shapes,
        const TensorShapeArray &output_shapes) const {
#define in(x) {input_shapes[x], input(x)->dtype()}
#define out(x) {output_shapes[x], output(x)->dtype()}
    return megdnn_opr()->get_workspace_in_bytes(
            in(0), in(1), in(2), out(0), out(1), out(2), out(3), out(4));
#undef in
#undef out
}

void BatchNormForward::init_output_static_infer_desc() {
    Super::set_nr_managed_outputs(this->output().size() - 1);
    Super::init_output_static_infer_desc();
    this->init_output_static_infer_desc_workspace(
            intl::AutoAddWorkspaceNeedLimitGetter<megdnn::BNForward>::val);
}

void BatchNormForward::init_output_dtype() {
    size_t nr_inp = input().size();
    mgb_assert(input(0)->dtype().category() == input(1)->dtype().category());
    for (size_t i = 2; i < nr_inp; ++ i) {
        mgb_assert(input(1)->dtype() == input(i)->dtype());
    }
    output(4)->dtype(input(0)->dtype());
    for (size_t i = 0; i < 4; ++ i) {
        output(i)->dtype(input(1)->dtype());
    }
}

223 224 225 226 227 228 229 230
void BatchNormForward::mem_plan_fwd_in2out_writable() {
    if (!m_force_inplace && input().size() == 5) {
        // TODO: testing
        output(0)->set_fwd_in2out_writable(input(3));
        output(1)->set_fwd_in2out_writable(input(4));
    }
}

231
#ifdef MGB_ENABLE_GRAD
232
MGB_IMPL_OPR_GRAD(BatchNormForward) {
233 234 235 236 237
    mgb_assert(opr.param().fwd_mode == BatchNorm::Param::FwdMode::TRAINING,
        "batch norm could only take grad in training mode");
    mgb_assert(wrt_idx < 5, "wrt_idx %zu is out of range", wrt_idx);
    VarNodeArray ret(opr.input().size(), nullptr);
    SymbolVarArray grad = BatchNormBackward::make(
238 239 240
            opr.input(0), out_grad[4],
            opr.output(2), opr.output(3),
            opr.input(1), opr.param());
241 242
    for (size_t i = 0; i < 3; ++ i) {
        ret[i] = grad[(i + 2) % 3].node();
243
    }
244
    return ret;
245
}
246
#endif
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

MGB_DYN_TYPE_OBJ_FINAL_IMPL(BatchNormBackward);

BatchNormBackward::BatchNormBackward(VarNode *x,
        VarNode *y_grad, VarNode *save_mean,
        VarNode* save_variance, VarNode *scale,
        const Param &param, const OperatorNodeConfig &config):
    Super({x->owner_graph(), config, "batch_norm_bwd",
            {x, y_grad, save_mean, save_variance, scale}},
            0, true)
{
    init_megdnn_opr(*this, param);
    add_input({x, y_grad, save_mean, save_variance, scale});
}

SymbolVarArray BatchNormBackward::make(SymbolVar x,
        SymbolVar y_grad, SymbolVar save_mean,
        SymbolVar save_variance, SymbolVar scale,
        const Param &param,
        const OperatorNodeConfig &config) {
    auto&& out = x.node()
                    ->owner_graph()
                    ->insert_opr(std::make_unique<BatchNormBackward>(
                        x.node(), y_grad.node(), save_mean.node(),
                        save_variance.node(), scale.node(), param, config))
                    ->output();
    SymbolVarArray ret(out.size());
    for (size_t i = 0; i < ret.size(); i++) {
        ret[i] = out[i];
    }
    return ret;
}

void BatchNormBackward::init_output_static_infer_desc() {

    using namespace cg::static_infer;
    auto &&mgr = owner_graph()->static_infer_manager();

    mgr.register_shape_infer(output(0),
            ShapeInferDesc::make_identity(input(4)));
    mgr.register_shape_infer(output(1),
            ShapeInferDesc::make_identity(input(4)));
    mgr.register_shape_infer(output(2),
            ShapeInferDesc::make_identity(input(0)));
    this->init_output_static_infer_desc_workspace(
            intl::AutoAddWorkspaceNeedLimitGetter<megdnn::BNBackward>::val);
}

void BatchNormBackward::init_output_dtype() {
    mgb_assert(input(0)->dtype().category() == input(2)->dtype().category());
    mgb_assert(input(0)->dtype() == input(1)->dtype());
    mgb_assert(input(2)->dtype() == input(3)->dtype());
    mgb_assert(input(2)->dtype() == input(4)->dtype());
    output(0)->dtype(input(2)->dtype());
    output(1)->dtype(input(2)->dtype());
    output(2)->dtype(input(0)->dtype());
}

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}