network_impl.cpp 40.7 KB
Newer Older
1 2
/**
 * \file src/mge/network_impl.cpp
3
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
4
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6
 *
7 8 9
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
10 11 12 13 14 15 16 17
 */

#include "lite_build_config.h"

#if LITE_BUILD_WITH_MGE
#include "common.h"
#include "lite/network.h"
#include "memory_allocator.h"
M
Megvii Engine Team 已提交
18
#include "network_impl.h"
19
#include "parse_info/parse_info_base.h"
M
Megvii Engine Team 已提交
20
#include "parse_model/model_parser.h"
21 22 23 24 25 26 27

#include "megbrain/common.h"
#include "megbrain/comp_node.h"
#include "megbrain/comp_node_env.h"
#include "megbrain/graph.h"
#include "megbrain/graph/cg.h"
#include "megbrain/opr/io.h"
28
#include "megbrain/opr/tensor_manip.h"
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#include "megbrain/tensor.h"

#if MGB_OPENCL
#include "megcore_opencl.h"
#endif

#include <fstream>
#include <memory>
#include <set>

using namespace lite;
using namespace mgb;

LITE_DYN_TYPE_OBJ_FINAL_IMPL(NetworkImplDft);

void NetworkImplDft::set_config(const Config& config) {
    m_user_config = std::make_unique<Config>();
    *m_user_config = config;
    m_compnode_locator = to_compnode_locator(m_user_config->device_type);
    m_compnode_locator.device = config.device_id;
}

void NetworkImplDft::shared_weight_with(const NetworkImplBase* src_network) {
    application_config();
    const auto& src_impl = src_network->cast_final_safe<NetworkImplDft>();
M
Megvii Engine Team 已提交
54
    LITE_ASSERT(src_impl.m_loader, "Clone network must after the network is loaded.");
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    m_load_result = src_impl.m_loader->load(m_load_config, true);

    //! flag weather the mode is cross compnode model
    cross_compnode_model_detect();

    //! update the IO of the network
    update_io();

    //! replace the IO when there is device input or output
    compile_graph();
}

void NetworkImplDft::application_config() {
    auto device_type = m_user_config->device_type;
    m_compnode_locator.type = to_compnode_locator(device_type).type;
70 71 72 73
    //! when the device id is not configured, configure it
    if (m_compnode_locator.device == -1) {
        m_compnode_locator.device = m_user_config->device_id;
    }
74 75
    if (m_nr_threads > 1 && device_type == LiteDeviceType::LITE_CPU) {
        m_compnode_locator.type = mgb::CompNode::DeviceType::MULTITHREAD;
76 77 78
        if (m_compnode_locator.device == -1) {
            m_compnode_locator.device = m_user_config->device_id;
        }
79 80 81 82 83 84 85 86 87 88 89 90 91
    }
    //! model options
#define ConfigOption(mge_name, lite_name) \
    options.mge_name = m_user_config->options.lite_name;

    auto&& options = m_load_config.comp_graph->options();
    ConfigOption(graph_opt.weight_preprocess, weight_preprocess);
    ConfigOption(graph_opt.fuse_preprocess, fuse_preprocess);
    ConfigOption(fake_next_exec, fake_next_exec);
    ConfigOption(var_sanity_check_first_run, var_sanity_check_first_run);
    m_load_config.const_var_shape = m_user_config->options.const_shape;
    ConfigOption(force_dynamic_alloc, force_dynamic_alloc);
    ConfigOption(force_output_dynamic_alloc, force_output_dynamic_alloc);
92 93 94
    ConfigOption(
            force_output_use_user_specified_memory,
            force_output_use_user_specified_memory);
95
    ConfigOption(no_profiling_on_shape_change, no_profiling_on_shape_change);
M
Megvii Engine Team 已提交
96 97 98 99 100
    LITE_ASSERT(
            m_user_config->options.jit_level == 0 ||
                    (m_user_config->options.jit_level > 0 &&
                     device_type == LiteDeviceType::LITE_CUDA),
            "jit only support in cuda device.");
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    ConfigOption(graph_opt.jit, jit_level);
    ConfigOption(comp_node_seq_record_level, comp_node_seq_record_level);
    ConfigOption(graph_opt_level, graph_opt_level);
    ConfigOption(async_exec_level, async_exec_level);

#undef ConfigOption
#define ConfigOptionLayoutTransform(name) \
    if (m_user_config->options.name) {    \
        options.graph_opt.name();         \
    }
    ConfigOptionLayoutTransform(enable_nchw44);
    ConfigOptionLayoutTransform(enable_nchw44_dot);
    ConfigOptionLayoutTransform(enable_nchw88);
    ConfigOptionLayoutTransform(enable_nhwcd4);
    ConfigOptionLayoutTransform(enable_nchw4);
    ConfigOptionLayoutTransform(enable_nchw32);
    ConfigOptionLayoutTransform(enable_nchw64);
#undef ConfigOptionLayoutTransform
    if (m_user_config->has_compression) {
        m_load_config.tensor_value_loader = decompressed_tensor_value_loader;
    }

123 124
    //! if device is LITE_NONE, the compnode information is stored in model or
    //! xpu in MegEngine
125
    if (device_type != LiteDeviceType::LITE_DEVICE_DEFAULT) {
126 127 128 129 130 131 132 133 134 135 136 137 138
        m_load_config.comp_node_mapper = [this](mgb::CompNode::Locator& loc) {
            if (loc.type == mgb::CompNode::DeviceType::UNSPEC) {
                loc.type = m_compnode_locator.type;
            }
            loc.device = m_compnode_locator.device;
            //! if user set the thread number and the compnode is multithread
            if (loc.type == mgb::CompNode::DeviceType::MULTITHREAD &&
                m_nr_threads != 1) {
                loc.stream = m_nr_threads;
            } else {
                loc.stream = m_compnode_locator.stream;
            }
        };
139 140 141
    }
}

M
Megvii Engine Team 已提交
142
void NetworkImplDft::set_memory_allocator(std::shared_ptr<Allocator> user_allocator) {
143 144 145 146 147 148
    auto allocator = std::make_shared<UserStaticMemAlloc>(user_allocator);
    LITE_ASSERT(m_load_config.comp_graph);
    m_load_config.comp_graph->set_device_memory_allocator(allocator);
}

//! share the runtime memory with other network, the weights is not shared
M
Megvii Engine Team 已提交
149
void NetworkImplDft::share_runtime_memory_with(Network::NetworkImplBase* network_impl) {
150 151
    LITE_ASSERT(network_impl);
    LITE_ASSERT(m_load_config.comp_graph);
M
Megvii Engine Team 已提交
152 153
    m_load_config.comp_graph->share_device_memory_with(*(
            network_impl->cast_final_safe<NetworkImplDft>().m_load_config.comp_graph));
154 155 156
}

void NetworkImplDft::set_cpu_inplace_mode() {
M
Megvii Engine Team 已提交
157 158 159
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU,
            "cpu inplace mode is only avaliable in CPU.");
160 161 162
    m_is_cpu_inplace_mode = true;
    if (m_compnode_locator.type == mgb::CompNode::DeviceType::CPU) {
        m_compnode_locator.device = mgb::CompNode::Locator::DEVICE_CPU_DEFAULT;
163
        m_user_config->device_id = mgb::CompNode::Locator::DEVICE_CPU_DEFAULT;
164 165 166 167
    } else {
        LITE_ASSERT(
                m_compnode_locator.type == CompNode::DeviceType::MULTITHREAD,
                "cpu inplace mode is only avaliable in CPU.");
M
Megvii Engine Team 已提交
168
        m_compnode_locator.device = mgb::CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT;
169
        m_user_config->device_id = mgb::CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT;
170 171 172 173
    }
}

void NetworkImplDft::set_cpu_threads_number(size_t nr_threads) {
M
Megvii Engine Team 已提交
174 175 176
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU,
            "multi threads mode is only avaliable in CPU.");
177 178 179
    if (nr_threads > 1) {
        m_nr_threads = nr_threads;
        m_compnode_locator.type = mgb::CompNode::DeviceType::MULTITHREAD;
180 181 182 183 184 185
        if (m_is_cpu_inplace_mode) {
            m_compnode_locator.device =
                    mgb::CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT;
            m_user_config->device_id =
                    mgb::CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT;
        }
186 187 188 189 190 191
        m_compnode_locator.nr_threads = nr_threads;
    }
}

void NetworkImplDft::set_runtime_thread_affinity(
        const ThreadAffinityCallback& thread_affinity_callback) {
M
Megvii Engine Team 已提交
192 193 194
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU,
            "multi threads mode is only avaliable in CPU.");
195 196 197 198 199 200 201 202
    mgb::CompNode::Locator loc;
    m_load_config.comp_node_mapper(loc);
    auto cn = mgb::CompNode::load(loc);
    if (m_nr_threads > 1) {
        mgb::CompNodeEnv::from_comp_node(cn).cpu_env().set_affinity(
                thread_affinity_callback);
    } else {
        mgb::CompNodeEnv::from_comp_node(cn).cpu_env().dispatch(
M
Megvii Engine Team 已提交
203
                [thread_affinity_callback](void) { thread_affinity_callback(0); });
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    }
}

void NetworkImplDft::set_device_id(int device_id) {
    m_compnode_locator.device = device_id;
    m_user_config->device_id = device_id;
}

void NetworkImplDft::set_stream_id(int stream_id) {
    m_compnode_locator.stream = stream_id;
}

void NetworkImplDft::use_tensorrt() {
    auto&& options = m_load_config.comp_graph->options();
    options.graph_opt.tensorrt = true;
}

//! set the callback in async model
void NetworkImplDft::set_async_callback(const AsyncCallback& callback) {
M
Megvii Engine Team 已提交
223 224 225 226 227
    LITE_ASSERT(!m_is_cpu_inplace_mode, "cpu inplace mode not support async mode");
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU ||
                    m_user_config->device_type == LiteDeviceType::LITE_CUDA,
            "Now only cpu and cuda>10.0 support async mode");
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    m_async = true;
    m_async_callback = std::move(callback);
}

void NetworkImplDft::make_output_spec() {
    m_output_spec.clear();
    for (auto&& out : m_network_io->outputs) {
        if (m_load_result.output_var_map.count(out.name)) {
            auto&& load_out = m_load_result.output_var_map[out.name];
            auto cb = [&out, this](const mgb::DeviceTensorND& dv) mutable {
                mgb::CompNode comp_node = dv.comp_node();
                if (out.io_type == LiteIOType::LITE_IO_SHAPE) {
                    auto mgb_layout = dv.layout();
                    out.lite_tensor->set_layout(to_lite_layout(mgb_layout));
                } else {
                    TensorHelper::implement(out.lite_tensor)
                            ->cast_final_safe<TensorImplDft>()
                            .copy_from_mge_tensor(dv);
                    out.lite_tensor->update_from_implement();
                }
                if (m_async) {
                    out.have_sync = true;
                    bool need_exec_cb = true;
                    for (auto&& j : m_network_io->outputs) {
                        if (!j.have_sync) {
                            need_exec_cb = false;
                        }
                    }
                    if (need_exec_cb) {
                        for (auto&& j : m_network_io->outputs) {
                            j.have_sync = false;
                        }
                        comp_node.add_callback([this]() { finish(); });
                    }
                }
            };
264 265 266 267 268 269 270
            //! if write to user-specified memory, the CallbackCaller must be nullptr.
            if (m_user_config->options.force_output_use_user_specified_memory ||
                m_user_config->options.force_output_dynamic_alloc) {
                m_output_spec.emplace_back(load_out, nullptr);
            } else {
                m_output_spec.emplace_back(load_out, std::move(cb));
            }
271
        } else {
M
Megvii Engine Team 已提交
272
            LITE_THROW(ssprintf("no output named : %s in the mode", out.name.c_str()));
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
        }
    }
}

void NetworkImplDft::replace_dev_input_pass() {
    mgb::CompNode::Locator locator;
    m_load_config.comp_node_mapper(locator);
    //! CPU is not need use device input
    if (locator.type == mgb::CompNode::DeviceType::CPU) {
        return;
    }
    //! repalce the H2D with VolatileSharedDeviceTensor, and keep the dev tensor
    //! in m_network_io.input, user can directly change the dev tensor
    //! storage through m_network_io.input.lite_tensor->reset() befor forward
    using DeviceTensorMap =
M
Megvii Engine Team 已提交
288
            std::unordered_map<std::string, std::shared_ptr<mgb::DeviceTensorND>>;
289 290 291 292 293 294 295 296
    DeviceTensorMap name2dev_tensor;

    mgb::ThinHashMap<mgb::HostTensorND*, mgb::SymbolVar> host_val2var;

    //! construct host_val2var that maps from host tensor to corresponding var
    auto on_opr = [&](mgb::cg::OperatorNodeBase* opr) {
        if (opr->same_type<mgb::opr::Host2DeviceCopy>()) {
            mgb::HostTensorND* tensor =
M
Megvii Engine Team 已提交
297
                    opr->cast_final<mgb::opr::Host2DeviceCopy>().host_data().get();
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
            host_val2var[tensor] = opr->output(0);
        }
    };
    mgb::cg::DepOprIter dep_iter{on_opr};
    for (auto i : m_load_result.output_var_list) {
        dep_iter.add(i.node()->owner_opr());
    }

    mgb::ThinHashMap<mgb::SymbolVar, mgb::SymbolVar> inp_var_map, out_var_map;

    mgb::SmallVector<std::string> to_clear;
    for (auto&& config_in : m_network_io->inputs) {
        if (!config_in.is_host) {
            auto host_val = m_load_result.tensor_map[config_in.name];
            auto dev_val = TensorHelper::implement(config_in.lite_tensor)
                                   ->cast_final_safe<TensorImplDft>()
                                   .m_dev_tensor;
            auto dev_var = mgb::opr::VolatileSharedDeviceTensor::make(
                    *m_load_result.graph, dev_val, {config_in.name});
            inp_var_map[host_val2var.at(host_val.get())] = dev_var;
            name2dev_tensor[config_in.name] = dev_val;
        }
    }
M
Megvii Engine Team 已提交
321
    auto new_ovar = mgb::cg::replace_vars(m_load_result.output_var_list, inp_var_map);
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    for (size_t i = 0; i < new_ovar.size(); ++i) {
        out_var_map[m_load_result.output_var_list[i]] = new_ovar[i];
    }
    for (auto&& i : m_load_result.output_var_map) {
        i.second = out_var_map.at(i.second);
    }
    for (auto&& i : m_load_result.output_var_map_id) {
        i.second = out_var_map.at(i.second);
    }
    for (size_t i = 0; i < m_load_result.output_var_list.size(); i++) {
        new_ovar[i].rename(m_load_result.output_var_list[i].node()->name());
    }
    m_load_result.output_var_list = std::move(new_ovar);
}

void NetworkImplDft::cross_compnode_model_detect() {
    mgb::ThinHashSet<LiteDeviceType> nr_used_device_type;
    auto on_opr = [&](mgb::cg::OperatorNodeBase* opr) {
        for (auto j : opr->output()) {
            if (j->comp_node() != mgb::CompNode::default_cpu()) {
                nr_used_device_type.insert(
                        get_device_from_locator(j->comp_node().locator()));
            }
        }
    };
    mgb::cg::DepOprIter dep_iter{on_opr};
    for (auto i : m_load_result.output_var_list) {
        dep_iter.add(i.node()->owner_opr());
    }
M
Megvii Engine Team 已提交
351
    m_nr_device_type = nr_used_device_type.size();
352 353
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
void NetworkImplDft::adapt_option_valid() {
    auto&& options = m_load_config.comp_graph->options();
    if (m_user_config->options.force_output_use_user_specified_memory) {
        for (auto&& out : m_load_result.output_var_list) {
            auto opr = out.node()->owner_opr();
            //! all the dest operator inherit from ReadonlyFwdHelper can't
            //! support force_output_use_user_specified_memory options
            if (opr->try_cast_final<mgb::opr::Reshape>() ||
                opr->try_cast_final<mgb::opr::Broadcast>() ||
                opr->try_cast_final<mgb::opr::Subtensor>() ||
                opr->try_cast_final<mgb::opr::AxisAddRemove>() ||
                opr->try_cast_final<mgb::opr::Dimshuffle>()) {
                m_user_config->options.force_output_use_user_specified_memory = false;
                options.force_output_use_user_specified_memory = false;
                LITE_WARN(
                        "detect the unsupported dest operator %s when config "
                        "force_output_use_user_specified_memory, set "
                        "force_output_use_user_specified_memory to false\n",
                        opr->cname());
                break;
            }
        }
    }
}

379 380
void NetworkImplDft::global_layout_transform() {
    if (m_set_layout_transform) {
381 382
        mgb::ThinHashMap<mgb::SymbolVar, mgb::SymbolVar> out_var_map;
        auto output_var_array = mgb::gopt::layout_transform(
383
                m_load_result.output_var_list, m_layout_transform_target);
384 385 386 387 388 389 390 391 392 393 394 395 396
        // replace symvar in output_var_list
        for (size_t idx = 0; idx < output_var_array.size(); ++idx) {
            out_var_map[m_load_result.output_var_list[idx]] = output_var_array[idx];
            m_load_result.output_var_list[idx] = output_var_array[idx];
        }
        // replace symvar in output_var_map_id
        for (auto&& item : m_load_result.output_var_map_id) {
            item.second = out_var_map[item.second];
        }
        // replace symvar in output_var_map
        for (auto&& item : m_load_result.output_var_map) {
            item.second = out_var_map[item.second];
        }
397 398 399
    }
}

400 401 402 403
void NetworkImplDft::load_model(
        std::shared_ptr<void> model_mem, size_t size,
        std::unordered_map<std::string, LiteAny> separate_config_map) {
    if (!m_loader) {
M
Megvii Engine Team 已提交
404 405
        m_input_file =
                mgb::serialization::InputFile::make_mem_proxy(model_mem, size, false);
406
        m_format = mgb::serialization::GraphLoader::identify_graph_dump_format(
M
Megvii Engine Team 已提交
407
                *m_input_file);
408
        if (!m_format.valid()) {
409 410 411
            LITE_THROW("invalid model format");
        }
        m_loader = mgb::serialization::GraphLoader::make(
412
                std::move(m_input_file), m_format.val());
413 414 415 416 417 418 419
    }

    //! applay the user configration to mge model
    application_config();

    //! config some flag get from json config file
    if (separate_config_map.find("device_id") != separate_config_map.end()) {
420
        set_device_id(separate_config_map["device_id"].safe_cast<int>());
421
    }
M
Megvii Engine Team 已提交
422
    if (separate_config_map.find("number_threads") != separate_config_map.end() &&
423
        separate_config_map["number_threads"].safe_cast<uint32_t>() > 1) {
424
        set_cpu_threads_number(
425
                separate_config_map["number_threads"].safe_cast<uint32_t>());
426
    }
M
Megvii Engine Team 已提交
427
    if (separate_config_map.find("enable_inplace_model") != separate_config_map.end() &&
428
        separate_config_map["enable_inplace_model"].safe_cast<bool>()) {
429 430 431
        set_cpu_inplace_mode();
    }
    if (separate_config_map.find("use_tensorrt") != separate_config_map.end() &&
432
        separate_config_map["use_tensorrt"].safe_cast<bool>()) {
433 434 435
        use_tensorrt();
    }

436
    m_load_result = m_loader->load(m_load_config, true);
437

438 439
    modify_exection_policy();

440
    global_layout_transform();
441

442 443
    adapt_option_valid();

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
    cross_compnode_model_detect();

    //! update the IO of the network
    update_io();

    //! replace the IO when there is device input or output
    compile_graph();
}

void NetworkImplDft::compile_graph() {
    replace_dev_input_pass();
    make_output_spec();
    m_execute_func = m_load_result.graph_compile(m_output_spec);
}

void NetworkImplDft::start() const {
    if (m_start_callback) {
        std::unordered_map<std::string, std::pair<IO, std::shared_ptr<Tensor>>>
                input_io_map;
        for (auto&& io_inner : m_network_io->inputs) {
            input_io_map[io_inner.name] = {
                    IO{io_inner.name, io_inner.is_host, io_inner.io_type,
                       io_inner.config_layout},
                    io_inner.lite_tensor};
        }
        m_start_callback(input_io_map);
    }
}

void NetworkImplDft::forward() {
    start();
475 476 477 478
    if (m_load_config.comp_graph &&
        m_user_config->options.comp_node_seq_record_level == 2) {
        m_load_config.comp_graph.reset();
    }
479 480 481 482 483 484 485 486 487 488 489 490 491
    LITE_ASSERT(m_execute_func, "forward must be called after network loaded.");
    m_execute_func->execute();
}

void NetworkImplDft::wait() {
    if (!m_async) {
        m_execute_func->wait();
    }
    finish();
}

void NetworkImplDft::finish() const {
    if (m_async) {
M
Megvii Engine Team 已提交
492
        LITE_ASSERT(m_async_callback, "The callback func must set when async mode.");
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
        m_async_callback();
    }
    if (m_finish_callback) {
        std::unordered_map<std::string, std::pair<IO, std::shared_ptr<Tensor>>>
                output_io_map;
        for (auto&& io_inner : m_network_io->outputs) {
            output_io_map[io_inner.name] = {
                    IO{io_inner.name, io_inner.is_host, io_inner.io_type,
                       io_inner.config_layout},
                    io_inner.lite_tensor};
        }
        m_finish_callback(output_io_map);
    }
    output_plugin_result();
}

void NetworkImplDft::set_io(const NetworkIO& network_io) {
    m_network_io = std::make_unique<NetworkIOInner>();
    for (auto&& in : network_io.inputs) {
        m_network_io->inputs.emplace_back(in);
    }
    for (auto&& out : network_io.outputs) {
        m_network_io->outputs.emplace_back(out);
    }
}

519
void NetworkImplDft::try_infer_tensor_layout(std::shared_ptr<Tensor> tensor, Var var) {
520 521
    if (var.node()->capable_shape_infer()) {
        auto&& static_infer_mgr = m_load_config.comp_graph->static_infer_manager();
522 523 524 525 526 527
        auto shape = static_infer_mgr.infer_shape_fallible(var.node());
        if (!shape) {
            LITE_WARN(
                    "Lite infer output shape failed, maybe the model is "
                    "dynamic "
                    "shape.\n");
528 529 530 531
            LITE_ASSERT(
                    !m_user_config->options.force_output_use_user_specified_memory,
                    "force_output_use_user_specified_memory can't be used when output "
                    "shape can't be derived.");
532 533
            return;
        }
534
        Layout layout = to_lite_layout(TensorLayout{*shape, var.dtype()});
535 536 537 538
        tensor->set_layout(layout);
    }
}

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
void NetworkImplDft::update_io() {
    update_input();
    update_output();
}

void NetworkImplDft::update_input() {
    auto device_type = m_user_config->device_type;
    auto device_id = m_compnode_locator.device;
    auto stream_id = m_compnode_locator.stream;
    //! if cpu all input and output are host
    if (device_type == LiteDeviceType::LITE_CPU) {
        for (auto&& in : m_network_io->inputs) {
            in.is_host = true;
        }
    }
    //! if cross compnode model, modify the device input if it is not valid
    if (m_nr_device_type > 1) {
        for (auto&& in_tensor_iter : m_load_result.tensor_map) {
            for (auto&& config_in : m_network_io->inputs) {
                //! if tensor is set to device input
M
Megvii Engine Team 已提交
559
                if (in_tensor_iter.first == config_in.name && !config_in.is_host) {
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
                    //! if the origin compnode of the tensor is not the device,
                    //! set the input to host
                    if (get_device_from_locator(
                                in_tensor_iter.second->comp_node().locator()) ==
                        LiteDeviceType::LITE_CPU) {
                        config_in.is_host = true;
                        LITE_WARN(
                                "The input tensor %s of the cross device model "
                                "should not from device.",
                                config_in.name.c_str());
                    }
                }
            }
        }
    }
    for (auto&& in_tensor_iter : m_load_result.tensor_map) {
        bool found = false;
        for (auto&& config_in : m_network_io->inputs) {
            if (in_tensor_iter.first == config_in.name) {
                found = true;
                if (config_in.is_host) {
                    config_in.lite_tensor = std::make_shared<Tensor>(
                            device_id, stream_id, device_type, true);
                    TensorHelper::implement(config_in.lite_tensor)
                            ->cast_final_safe<TensorImplDft>()
                            .m_host_tensor = in_tensor_iter.second;
                    config_in.lite_tensor->update_from_implement();
                } else {
M
Megvii Engine Team 已提交
588 589
                    config_in.lite_tensor =
                            std::make_shared<Tensor>(device_id, stream_id, device_type);
590 591 592
                    config_in.lite_tensor->set_layout(
                            to_lite_layout(in_tensor_iter.second->layout()));
                }
593 594 595 596
                TensorHelper::implement(config_in.lite_tensor)
                        ->cast_final_safe<TensorImplDft>()
                        .m_record_reset =
                        m_user_config->options.comp_node_seq_record_level > 0;
597
                if (config_in.config_layout.ndim &&
M
Megvii Engine Team 已提交
598
                    !(config_in.config_layout == config_in.lite_tensor->get_layout())) {
599 600 601 602 603 604 605
                    config_in.lite_tensor->set_layout(config_in.config_layout);
                }
            }
        }
        if (!found) {
            IOInner io_in;
            io_in.name = in_tensor_iter.first;
M
Megvii Engine Team 已提交
606 607
            io_in.lite_tensor =
                    std::make_shared<Tensor>(device_id, stream_id, device_type, true);
608 609 610
            TensorHelper::implement(io_in.lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_host_tensor = in_tensor_iter.second;
611 612 613 614
            TensorHelper::implement(io_in.lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_record_reset =
                    m_user_config->options.comp_node_seq_record_level > 0;
615 616 617 618 619
            io_in.lite_tensor->update_from_implement();
            m_network_io->inputs.push_back(io_in);
        }
    }
    //! delete the IO that is not the network
M
Megvii Engine Team 已提交
620
    for (auto it = m_network_io->inputs.begin(); it != m_network_io->inputs.end();) {
621
        if (it->lite_tensor == nullptr) {
M
Megvii Engine Team 已提交
622
            LITE_LOG("%s is not the network input, ignore it.", it->name.c_str());
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
            it = m_network_io->inputs.erase(it);
        } else {
            it++;
        }
    }
}

void NetworkImplDft::update_output() {
    auto device_type = m_user_config->device_type;
    auto device_id = m_compnode_locator.device;
    auto stream_id = m_compnode_locator.stream;
    if (device_type == LiteDeviceType::LITE_CPU) {
        for (auto&& out : m_network_io->outputs) {
            out.is_host = true;
        }
    }
    //! delete the output that is not the network
    for (auto out_it = m_network_io->outputs.begin();
         out_it != m_network_io->outputs.end();) {
M
Megvii Engine Team 已提交
642 643
        if (std::find_if(
                    m_load_result.output_var_list.begin(),
644
                    m_load_result.output_var_list.end(), [out_it](const SymbolVar var) {
M
Megvii Engine Team 已提交
645 646 647
                        return var.node()->name() == out_it->name;
                    }) == m_load_result.output_var_list.end()) {
            LITE_LOG("%s is not the network output, ignore it.", out_it->name.c_str());
648 649 650 651 652 653 654
            out_it = m_network_io->outputs.erase(out_it);
        } else {
            out_it++;
        }
    }
    //! user config the output tensor, so only compute the config output
    if (m_compute_configured_output_only) {
M
Megvii Engine Team 已提交
655 656 657
        LITE_ASSERT(
                m_network_io->outputs.size() > 0,
                "compute configured output only with no configure output.");
658 659 660 661 662 663 664
        for (auto out_it = m_network_io->outputs.begin();
             out_it != m_network_io->outputs.end(); out_it++) {
            //! use pinned memory to copy form device
            if (out_it->is_host) {
                out_it->lite_tensor = std::make_shared<Tensor>(
                        device_id, stream_id, device_type, true);
            } else {
M
Megvii Engine Team 已提交
665 666
                out_it->lite_tensor =
                        std::make_shared<Tensor>(device_id, stream_id, device_type);
667
            }
668
            SymbolVar var;
669 670 671 672 673 674 675
            for (auto&& out_var : m_load_result.output_var_list) {
                if (out_var.node()->name() == out_it->name) {
                    var = out_var;
                    break;
                }
            }
            try_infer_tensor_layout(out_it->lite_tensor, var);
676
            output_tensor_copy_optimize(var, out_it->lite_tensor);
677 678 679 680
            TensorHelper::implement(out_it->lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_record_reset =
                    m_user_config->options.comp_node_seq_record_level > 0;
681 682 683 684
        }
        //! user not set, use default output
    } else {
        for (auto&& out : m_load_result.output_var_list) {
685
            std::shared_ptr<Tensor> lite_tensor = nullptr;
M
Megvii Engine Team 已提交
686 687 688
            auto it = std::find_if(
                    m_network_io->outputs.begin(), m_network_io->outputs.end(),
                    [&out](const IOInner io) { return io.name == out.node()->name(); });
689 690 691 692 693
            if (it != m_network_io->outputs.end()) {
                if (it->is_host) {
                    it->lite_tensor = std::make_shared<Tensor>(
                            device_id, stream_id, device_type, true);
                } else {
M
Megvii Engine Team 已提交
694 695
                    it->lite_tensor =
                            std::make_shared<Tensor>(device_id, stream_id, device_type);
696
                }
697
                try_infer_tensor_layout(it->lite_tensor, out);
698
                lite_tensor = it->lite_tensor;
699 700 701 702 703 704
            } else {
                IOInner output;
                output.name = out.node()->name();
                output.lite_tensor = std::make_shared<Tensor>(
                        device_id, stream_id, device_type, true);
                m_network_io->outputs.push_back({output});
705
                try_infer_tensor_layout(output.lite_tensor, out);
706
                lite_tensor = output.lite_tensor;
707
            }
708
            output_tensor_copy_optimize(out, lite_tensor);
709 710 711 712
            TensorHelper::implement(lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_record_reset =
                    m_user_config->options.comp_node_seq_record_level > 0;
713 714 715 716
        }
    }
}

717 718 719 720 721 722 723 724
void NetworkImplDft::output_tensor_copy_optimize(
        Var var, std::shared_ptr<Tensor> tensor) {
    LITE_ASSERT(
            !(m_user_config->options.force_output_use_user_specified_memory &&
              m_user_config->options.force_output_dynamic_alloc),
            "Can't set force_output_use_user_specified_memory and "
            "force_output_dynamic_alloc at the same time.");
    if (m_user_config->options.force_output_use_user_specified_memory) {
725
        bool in_record = m_user_config->options.comp_node_seq_record_level > 0;
726 727
        TensorHelper::implement(tensor)
                ->cast_final_safe<TensorImplDft>()
728
                .set_reset_callback([var, in_record](TensorImplDft* dft_tensor) {
729 730 731 732
                    dft_tensor->device_share_host_memory();
                    auto dv = dft_tensor->dev_tensor().get();
                    dv->comp_node(var.node()->comp_node(), true);
                    var.node()->init_mem_plan(dv);
733 734 735 736 737 738
                    if (in_record) {
                        auto&& device_tensor = var.node()->mutable_dev_tensor();
                        device_tensor.only_reset_raw_storage(dv->storage());
                    } else {
                        var.node()->reset_dev_tensor_from_tensor(*dv);
                    }
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
                });
    }
    if (m_user_config->options.force_output_dynamic_alloc) {
        TensorHelper::implement(tensor)
                ->cast_final_safe<TensorImplDft>()
                .set_get_memory_callback([var](TensorImplDft* dft_tensor) {
                    if (dft_tensor->is_host()) {
                        auto host_tensor = dft_tensor->m_host_tensor;
                        *host_tensor =
                                HostTensorND::make_proxy(var.node()->dev_tensor());
                    } else {
                        auto dev_tensor = dft_tensor->m_dev_tensor;
                        *dev_tensor = var.node()->dev_tensor();
                    }
                });
    }
}

M
Megvii Engine Team 已提交
757 758 759
std::shared_ptr<Tensor> NetworkImplDft::get_io_tensor(
        std::string io_name, LiteTensorPhase phase) {
    if (phase == LiteTensorPhase::LITE_INPUT || phase == LiteTensorPhase::LITE_IO) {
760 761 762 763 764 765
        for (auto&& config_in : m_network_io->inputs) {
            if (io_name == config_in.name) {
                return config_in.lite_tensor;
            }
        }
    }
M
Megvii Engine Team 已提交
766
    if (phase == LiteTensorPhase::LITE_OUTPUT || phase == LiteTensorPhase::LITE_IO) {
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
        for (auto&& config_out : m_network_io->outputs) {
            if (io_name == config_out.name) {
                config_out.lite_tensor->update_from_implement();
                return config_out.lite_tensor;
            }
        }
    }
    LITE_THROW(mgb::ssprintf(
            "tensor name must be %s input tensor name or the registered "
            "output tensor name if NetworkIO is set, if NetworkIO is not set, "
            "the output tensor is all the network output tensor, or the output "
            "tensor is only the registered tensor.",
            io_name.c_str()));
    return nullptr;
}

std::shared_ptr<Tensor> NetworkImplDft::get_input_tensor(size_t index) {
    return get_io_tensor(get_input_name(index));
}

std::shared_ptr<Tensor> NetworkImplDft::get_output_tensor(size_t index) {
    return get_io_tensor(get_output_name(index));
}

//! set opr algorithm selection strategy in the network
M
Megvii Engine Team 已提交
792 793 794
void NetworkImplDft::set_network_algo_policy(
        LiteAlgoSelectStrategy strategy, uint32_t shared_batch_size,
        bool binary_equal_between_batch) {
795 796
    using S = megdnn::param::ExecutionPolicy::Strategy;
    auto dst_strategy = static_cast<S>(0);
M
Megvii Engine Team 已提交
797
    if (static_cast<uint32_t>(strategy) & LiteAlgoSelectStrategy::LITE_ALGO_HEURISTIC) {
798 799
        dst_strategy = dst_strategy | S::HEURISTIC;
    }
M
Megvii Engine Team 已提交
800
    if (static_cast<uint32_t>(strategy) & LiteAlgoSelectStrategy::LITE_ALGO_PROFILE) {
801 802 803 804 805 806
        dst_strategy = dst_strategy | S::PROFILE;
    }
    if (static_cast<uint32_t>(strategy) &
        LiteAlgoSelectStrategy::LITE_ALGO_REPRODUCIBLE) {
        dst_strategy = dst_strategy | S::REPRODUCIBLE;
    }
M
Megvii Engine Team 已提交
807
    if (static_cast<uint32_t>(strategy) & LiteAlgoSelectStrategy::LITE_ALGO_OPTIMIZED) {
808 809
        dst_strategy = dst_strategy | S::OPTIMIZED;
    }
810 811
    if (static_cast<uint32_t>(dst_strategy) != 0)
        m_execution_policy = dst_strategy;
812

M
Megvii Engine Team 已提交
813
    auto&& fast_run_config = m_load_config.comp_graph->options().fast_run_config;
814 815 816 817 818 819 820 821 822 823 824 825
    fast_run_config.binary_equal_between_batch = binary_equal_between_batch;
    fast_run_config.shared_batch_size = shared_batch_size;

    if (m_execute_func) {
        LITE_WARN(
                "set_network_algo_policy maybe cause error after loaded "
                "network!!!!");
        modify_exection_policy();
    }
}

void NetworkImplDft::modify_exection_policy() {
826 827
    auto& vars = m_load_result.output_var_list;
    if (static_cast<uint32_t>(m_execution_policy) != 0) {
828
        mgb::gopt::modify_opr_algo_strategy_inplace(vars, m_execution_policy);
829
    }
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
}

//! set opr algorithm selection strategy in the network
void NetworkImplDft::set_network_algo_workspace_limit(size_t workspace_limit) {
    mgb::SymbolVarArray vars;
    for (auto i : m_output_spec) {
        vars.push_back(i.first);
    }
    mgb::gopt::set_opr_algo_workspace_limit_inplace(vars, workspace_limit);
}

//! get the input tensor name in the order of graph
std::vector<const char*> NetworkImplDft::get_all_output_name() const {
    std::vector<const char*> output_names;
    for (auto& output : m_network_io->outputs) {
        output_names.push_back(output.name.c_str());
    }
    return output_names;
}

//! get the input tensor name in the order of graph
std::vector<const char*> NetworkImplDft::get_all_input_name() const {
    std::vector<const char*> input_names;
    for (auto& input : m_load_result.tensor_map) {
        input_names.push_back(input.first.c_str());
    }
    return input_names;
}

//! get the output tensor name in the order of graph
const char* NetworkImplDft::get_output_name(size_t index) const {
    LITE_ASSERT(
            index < m_load_result.output_var_list.size(),
            "The output tensor index is large than the total outputs number.");
    return m_load_result.output_var_list[index].node()->name().c_str();
}

//! get the input tensor name in the order of graph
const char* NetworkImplDft::get_input_name(size_t index) const {
    LITE_ASSERT(
            index < m_load_result.tensor_map.size(),
            "The input tensor index is large than the total inputs number.");
    size_t i = 0;
    for (auto& input : m_load_result.tensor_map) {
        if (i == index) {
            return input.first.c_str();
        }
        i++;
    }
    LITE_THROW(ssprintf("no input tensor of index %zu.", index));
}

//! Plugin part
void NetworkImplDft::enable_profile_performance(std::string profile_json_file) {
#if MGB_ENABLE_JSON
M
Megvii Engine Team 已提交
885
    m_profiler = std::make_unique<mgb::GraphProfiler>(m_load_config.comp_graph.get());
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
    m_profiler_output_file = profile_json_file;
#else
    LITE_MARK_USED_VAR(profile_json_file);
    LITE_THROW("JSON is disable at compile time.");
#endif
}

void NetworkImplDft::enable_io_txt_dump(std::string io_txt_out_file) {
    auto iodump = std::make_unique<mgb::TextOprIODump>(
            m_load_config.comp_graph.get(), io_txt_out_file.c_str());
    iodump->print_addr(false);
    m_iodump = std::move(iodump);
}

void NetworkImplDft::enable_io_bin_dump(std::string io_bin_out_dir) {
    m_iodump = std::make_unique<mgb::BinaryOprIODump>(
            m_load_config.comp_graph.get(), io_bin_out_dir.c_str());
}

void inline NetworkImplDft::output_plugin_result() const {
#if MGB_ENABLE_JSON
    if (m_profiler && m_execute_func) {
        m_profiler->to_json_full(m_execute_func.get())
                ->writeto_fpath(m_profiler_output_file);
    }
#endif
}
913 914 915 916 917 918 919

void NetworkImplDft::get_static_memory_alloc_info(const std::string& log_dir) const {
#ifndef __IN_TEE_ENV__
#if MGB_ENABLE_JSON
    m_execute_func->get_static_memory_alloc_info(log_dir);
    return;
#endif
920
#endif
921 922
    LITE_MARK_USED_VAR(log_dir);
}
923

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
void NetworkImplDft::enable_global_layout_transform() {
    m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::UNSPEC;

    switch (m_user_config->device_type) {
        case LiteDeviceType::LITE_CPU:
            m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::CPU;
            break;
        case LiteDeviceType::LITE_CUDA:
            m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::CUDA;
            break;
        default:
            m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::UNSPEC;
            LITE_WARN(
                    "lite compnode type: enum value: %d. is unspecial for layout "
                    "transform",
                    (int)(m_user_config->device_type));
    }
    m_set_layout_transform = true;
}

void NetworkImplDft::dump_layout_transform_model(std::string optimized_model_path) {
    if (m_set_layout_transform) {
        auto out_file = mgb::serialization::OutputFile::make_fs(
                optimized_model_path.c_str(), 'w');
        using DumpConfig = mgb::serialization::GraphDumper::DumpConfig;
        DumpConfig config{1, false, false};
        auto dumper = mgb::serialization::GraphDumper::make(
                std::move(out_file), m_format.val());
        dumper->dump(m_load_result.output_var_list, config);
    } else {
        LITE_THROW(
                ssprintf("dump layout transform model should call "
                         "enable_global_layout_transform before"));
    }
}
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

NetworkIO lite::get_model_io_info_dft(
        const std::string& model_path, const Config& config) {
    FILE* fin = fopen(model_path.c_str(), "rb");
    LITE_ASSERT(fin, "failed to open %s: %s", model_path.c_str(), strerror(errno));
    fseek(fin, 0, SEEK_END);
    size_t size = ftell(fin);
    fseek(fin, 0, SEEK_SET);
    void* ptr = malloc(size);
    std::shared_ptr<void> buf{ptr, ::free};
    auto nr = fread(buf.get(), 1, size, fin);
    LITE_ASSERT(nr == size);
    fclose(fin);
    return get_model_io_info_dft(ptr, size, config);
}

NetworkIO lite::get_model_io_info_dft(
        const void* model_mem, size_t size, const Config& config) {
    std::shared_ptr<void> model{const_cast<void*>(model_mem), [](void*) {}};
    auto input_file = mgb::serialization::InputFile::make_mem_proxy(model, size, false);
    auto format =
            mgb::serialization::GraphLoader::identify_graph_dump_format(*input_file);
    if (!format.valid()) {
        LITE_THROW("invalid model format");
    }
    auto loader =
            mgb::serialization::GraphLoader::make(std::move(input_file), format.val());

    mgb::serialization::GraphLoadConfig load_config;
    load_config.comp_graph = mgb::ComputingGraph::make();
    if (config.has_compression) {
        load_config.tensor_value_loader = decompressed_tensor_value_loader;
    }
    auto compnode_locator = to_compnode_locator(config.device_type);
    load_config.comp_node_mapper = [=](mgb::CompNode::Locator& loc) {
        if (loc.type == mgb::CompNode::DeviceType::UNSPEC) {
            loc.type = compnode_locator.type;
        }
        loc.device = compnode_locator.device;
    };
    auto load_result = loader->load(load_config, true);
    NetworkIO IOs;
    for (auto&& in_tensor_iter : load_result.tensor_map) {
        IO in_io;
        in_io.name = in_tensor_iter.first;
        in_io.config_layout = to_lite_layout(in_tensor_iter.second->layout());
        IOs.inputs.push_back(in_io);
    }
    auto infer_shape = [=](mgb::cg::SymbolVar var) -> const megdnn::TensorShape* {
        auto&& static_infer_mgr = load_config.comp_graph->static_infer_manager();
        using InferType = mgb::cg::static_infer::InferType;
        if (static_infer_mgr.get_infer_type(var.node()).shape &
            (InferType::CONST | InferType::RT_STATIC)) {
            return static_infer_mgr.infer_shape_fallible(var.node());
        } else {
            return nullptr;
        }
    };
    for (auto&& out : load_result.output_var_list) {
        IO out_io;
        out_io.name = out.node()->name();
        if (auto shape = infer_shape(out)) {
            out_io.config_layout = to_lite_layout(TensorLayout{*shape, out.dtype()});
        } else {
            out_io.config_layout = to_lite_layout(TensorLayout{{}, out.dtype()});
        }
        IOs.outputs.push_back(out_io);
    }
    return IOs;
}
1029
#endif
1030
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}