framework.cpp 31.7 KB
Newer Older
1 2 3 4
/**
 * \file src/gopt/impl/framework.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15
 */

#include "megbrain/gopt/framework.h"
#include "megbrain/gopt/basic_arith.h"
#include "megbrain/gopt/gtrans.h"
16 17
#include "megbrain/gopt/inference.h"
#include "megbrain/gopt/misc.h"
18
#include "megbrain/graph/cg.h"
19 20 21
#include "megbrain/graph/event.h"
#include "megbrain/graph/exc_extra_info.h"
#include "megbrain/serialization/opr_shallow_copy.h"
22
#include "megbrain/serialization/serializer.h"
23 24 25 26 27 28 29 30 31 32
#include "megbrain/utils/timer.h"

#if MGB_JIT
#include "megbrain/jit/fusion_pass.h"
#endif

#if MGB_ENABLE_TENSOR_RT
#include "megbrain/tensorrt/opr_replace.h"
#endif

33 34
#include "megbrain/gopt/global_layout_transform.h"

35 36 37 38 39 40
using namespace mgb;
using namespace gopt;

/* ================ SubGraph ================ */

OperatorNodeBase* SubGraph::Rewriter::auto_replace_outputs(
41 42
        OperatorNodeBase* opr) {
    auto&& new_inp = m_opr_new_inp_cache;
43 44 45 46
    new_inp.clear();
    new_inp.reserve(opr->input().size());
    bool has_replaced_inp = false;

47
    for (auto i : opr->input()) {
48 49 50 51 52 53 54 55 56 57
        auto new_var = get_var(i);
        if (new_var != i) {
            has_replaced_inp = true;
            new_inp.push_back(new_var);
        } else {
            new_inp.push_back(i);
        }
    }

    if (has_replaced_inp) {
58 59
        auto new_opr =
                serialization::copy_opr_shallow(*opr, new_inp, opr->config());
60 61 62
        auto &&out0 = opr->output(), &&out1 = new_opr->output();
        size_t i = 0;
        auto err_msg = [opr, new_opr] {
63 64 65
            return ssprintf("bad opr copy: src=%s{%s} dst=%s{%s}", opr->cname(),
                            opr->dyn_typeinfo()->name, new_opr->cname(),
                            new_opr->dyn_typeinfo()->name);
66 67 68 69 70 71 72
        };
        MGB_MARK_USED_VAR(err_msg);
        // opr output size mismatch may be caused by:
        //     0) inplace arith optimization (e.g. PowC need an extra workspace)
        //     1) other post-insert optimization (e.g. const folding)
        // we can't handle only usable_output here, since some output var with
        // volatile flag could be the graph's endpoint (e.g. RemoteSend)
73
        for (; i < std::min(out0.size(), out1.size()); ++i) {
74 75 76 77
            bool v0 = out0[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT),
                 v1 = out1[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT);
            mgb_assert(v0 == v1, "%s", err_msg().c_str());

78
            auto&& ins = m_varmap.insert({out0[i], {true, nullptr}});
79
            mgb_assert(ins.second || ins.first->second.first,
80
                       "opr output already replaced");
81 82 83 84
            // handle repeated call on the same opr
            ins.first->second.second = out1[i];
            on_var_replaced(out0[i], out1[i], nullptr);
        }
85
        for (; i < out0.size(); ++i) {
86
            mgb_assert(out0[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT),
87
                       "%s", err_msg().c_str());
88
        }
89
        for (; i < out1.size(); ++i) {
90
            mgb_assert(out1[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT),
91
                       "%s", err_msg().c_str());
92 93 94 95 96 97
        }
        return new_opr;
    }
    return opr;
}

98 99
void SubGraph::Rewriter::replace_var(VarNode* src, VarNode* dst,
                                     const char* msg) {
100 101 102 103 104 105 106 107 108
    if (src == dst)
        return;

    // Optimizers should not create a loop in varaible replace map.
    mgb_throw_if(
            get_var_internal(dst).second == src, InternalError,
            "dst %s maps back to src %s in SubGraph::Rewriter::replace_var",
            dst->cname(), src->cname());

109
    auto&& ins = m_varmap.insert({src, {false, dst}});
110
    if (!ins.second) {
111
        auto&& old_rep = ins.first->second;
112
        mgb_assert(old_rep.first || old_rep.second == dst,
113
                   "can not replace a var twice");
114 115 116 117 118 119
        old_rep.first = false;
        old_rep.second = dst;
    }
    on_var_replaced(src, dst, msg);
}

120 121
void SubGraph::Rewriter::on_var_replaced(VarNode* src, VarNode* dst,
                                         const char* msg) {
122 123 124 125 126 127 128 129
    if (auto state = m_owner_graph->owner_opt_state()) {
        state->on_var_replaced(src, dst, msg);
    }
}

void SubGraph::Rewriter::apply_inplace() const {
    m_owner_graph->m_endpoint_oprs.clear();
    m_owner_graph->m_endpoint_vars_set.clear();
130
    for (auto&& var : m_owner_graph->m_endpoint_vars) {
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        var = get_var(var.node());
        m_owner_graph->m_endpoint_oprs.insert(var.node()->owner_opr());
        m_owner_graph->m_endpoint_vars_set.insert(var.node());
    }
}

std::pair<bool, VarNode*> SubGraph::Rewriter::get_var_internal(VarNode* var) {
    // The implementation is (manually) unrolled once, background:
    // git-core/brain-sdk/MegBrain/merge_requests/486#note_76971
    auto it = m_varmap.find(var);
    if (it == m_varmap.end()) {
        return {true, var};
    }
    mgb_assert(it->second.second != var, "loop detected in m_varmap");
    auto it_next = m_varmap.find(it->second.second);
    if (it_next == m_varmap.end()) {
        return it->second;
    }
    mgb_assert(it_next->second.second != it->second.second,
               "loop detected in m_varmap");
    auto next = get_var_internal(it_next->second.second);
    it_next->second = {next.first & it_next->second.first, next.second};
    return it->second = {it_next->second.first & it->second.first, next.second};
}

156 157
SubGraph::SubGraph(const SymbolVarArray& endpoint_vars)
        : m_endpoint_vars(endpoint_vars) {
158 159
    mgb_assert(!endpoint_vars.empty(), "endpoints can not be empty");
    m_comp_graph = endpoint_vars[0].node()->owner_graph();
160
    for (auto i : endpoint_vars) {
161 162 163
        m_endpoint_oprs.insert(i.node()->owner_opr());
        m_endpoint_vars_set.insert(i.node());
        mgb_assert(m_comp_graph == i.node()->owner_graph(),
164
                   "endpoints belong to different computing graphs");
165 166 167
    }
}

168 169
void SubGraph::iter(const Callback& cb,
                    std::shared_ptr<ExtraDep> extra_dep) const {
170 171 172
    Callback on_opr;

    if (m_owner_opt_state) {
173
        on_opr = [state = m_owner_opt_state, &cb](OperatorNodeBase* opr) {
174 175 176
            state->m_opr_property_flag = OprPropertyFlag::ALL;
            state->m_cur_iter_src_opr = cg::get_opr_root_source_opr(opr);
            state->m_cur_iter_opr_priority =
177
                    opr->node_prop().attribute().priority;
178
            state->m_cur_iter_opr_stream_prop_type =
179
                    state->m_comp_node_opt.stream_prop_type(opr->output(0));
180 181 182 183 184 185 186 187 188 189 190
            mgb_assert(state->m_oprs_inserted.empty());
            cb(opr);
            state->m_opr_property_flag = OprPropertyFlag::NONE;
            state->m_cur_iter_src_opr = nullptr;
            state->m_oprs_inserted.clear();
        };
    } else {
        on_opr = cb;
    }

    cg::DepOprIter dep_iter{on_opr, std::move(extra_dep)};
191
    for (auto i : m_endpoint_oprs)
192 193 194 195 196
        dep_iter.add(i);
}

ThinHashMap<VarNode*, size_t> SubGraph::get_var2nr_val_dep_oprs() const {
    ThinHashMap<VarNode*, size_t> ret;
197 198
    auto cb = [&](OperatorNodeBase* opr) {
        for (auto&& i : opr->node_prop().dep_map()) {
199
            if (OperatorNodeBase::NodeProp::is_device_value_dep(i.second)) {
200
                ++ret.at(i.first);
201 202
            }
        }
203
        for (auto i : opr->output()) {
204 205 206 207 208 209 210
            if (!i->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) {
                auto ins = ret.insert({i, 0});
                mgb_assert(ins.second);
            }
        }
    };
    iter(cb);
211
    for (auto i : m_endpoint_vars_set) {
212 213 214 215 216
        auto iter = ret.find(i);
        if (iter == ret.end()) {
            mgb_assert(i->contain_flag(VarNode::Flag::VOLATILE_CONTENT));
            ret[i] = 1;
        } else {
217
            ++ret.at(i);
218 219 220 221 222 223 224
        }
    }
    return ret;
}

/* ================ UniqReaderCheck ================ */

225 226
UniqReaderCheck::UniqReaderCheck(const SubGraph& graph)
        : m_var2nr_val_dep{graph.get_var2nr_val_dep_oprs()} {}
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

void UniqReaderCheck::update_on_opr_auto_replace(OperatorNodeBase* opr,
                                                 OperatorNodeBase* repl_opr) {
    auto non_volatile_size = [](const VarNodeArray& vars) -> size_t {
        size_t size = 0;
        for (size_t i = 0; i < vars.size(); ++i) {
            if (!vars[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) {
                size++;
            }
        }
        return size;
    };
    if (opr != repl_opr) {
        auto &&o0 = opr->output(), &&o1 = repl_opr->output();
        mgb_assert(non_volatile_size(o0) == non_volatile_size(o1));
        for (size_t i = 0; i < o0.size(); ++i) {
            auto iter = m_var2nr_val_dep.find(o0[i]);
            if (iter != m_var2nr_val_dep.end()) {
                auto n = iter->second;
                m_var2nr_val_dep[o1[i]] = n;
            }
        }
    }
}

/* ================ OptState ================ */

254 255 256 257 258 259
OptState::OptState(const GraphOptimizer* owner_optimizer, const SubGraph& graph)
        : m_owner_optimizer{owner_optimizer},
          m_var_replace_map{const_cast<ThinHashMap<VarNode*, VarNode*>*>(
                  &GraphOptimizer::var_replace_map(*graph.comp_graph()))},
          m_comp_node_opt{graph.comp_graph()->seq_comp_node_optimizer()},
          m_graph{graph} {
260 261 262 263 264
    mgb_assert(!m_graph.m_owner_opt_state);
    m_var_replace_map->clear();
    m_graph.m_owner_opt_state = this;
    m_oprs_inserted.clear();

265
    auto on_opr_insert = [this](const cg::event::OprInserted& ev) {
266 267 268
        auto need_src_opr = m_opr_property_flag & OprPropertyFlag::SOURCE_OPR,
             need_priority = m_opr_property_flag & OprPropertyFlag::PRIORITY;
        if (need_src_opr)
269 270 271 272
            mgb_assert(m_cur_iter_src_opr,
                       "opr %s{%s} created outside from "
                       "SubGraph::iter",
                       ev.opr->cname(), ev.opr->dyn_typeinfo()->name);
273 274 275
        if (ev.exc || ev.is_dedup)
            return;

276 277
        auto&& new_attr = ev.opr->node_prop().attribute();
        auto&& ins = m_oprs_inserted.insert({ev.opr, OprPropertyFlag::NONE});
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
        mgb_assert(ins.second);

        if (need_src_opr && !new_attr.src_opr) {
            auto src_opr = m_cur_iter_src_opr;
            if (ev.opr != src_opr)
                new_attr.src_opr = src_opr;
            ins.first->second |= OprPropertyFlag::SOURCE_OPR;
        }
        if (need_priority) {
            new_attr.priority = m_cur_iter_opr_priority;
            if (!ev.opr->update_priority()) {
                ins.first->second |= OprPropertyFlag::PRIORITY;
            }
        }

        auto csp = m_cur_iter_opr_stream_prop_type;
        if (csp.prop_type != cg::SeqCompNodeOptimizer::StreamPropType::NONE) {
295
            for (auto i : ev.opr->output())
296 297 298
                m_comp_node_opt.register_stream_var(i, csp);
        }
    };
299 300 301 302
    m_on_opr_insert_handler =
            graph.comp_graph()
                    ->event()
                    .register_receiver<cg::event::OprInserted>(on_opr_insert);
303 304
}

305
void OptState::on_var_replaced(VarNode* src, VarNode* dst, const char* msg) {
306 307 308
    if (src->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) {
        // this can only happen in auto_replace_outputs()
        mgb_assert(dst->contain_flag(VarNode::Flag::VOLATILE_CONTENT) &&
309 310
                   src->owner_opr()->dyn_typeinfo() ==
                           dst->owner_opr()->dyn_typeinfo());
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
        mgb_assert(!msg);
        return;
    }

    //! check_property
    {
        auto iter = m_oprs_inserted.find(dst->owner_opr());
        if (iter != m_oprs_inserted.end()) {
            auto &&src_attr = src->owner_opr()->node_prop().attribute(),
                 &&dst_attr = dst->owner_opr()->node_prop().attribute();
            auto opr_info = [&](OperatorNodeBase* opr) {
                return opr ? opr->name() + "(" + std::to_string(opr->id()) + ")"
                           : "NULL";
            };
            auto err_msg = [&] {
                std::string ret = "Please contact Engine group:\n";
                ret += "src opr: ";
                ret += opr_info(src->owner_opr());
                ret += ", dst opr: ";
                ret += opr_info(dst->owner_opr());
                return ret;
            };
            MGB_MARK_USED_VAR(err_msg);
            if (iter->second & OprPropertyFlag::SOURCE_OPR) {
                auto &&src_rt = get_opr_root_source_opr(src->owner_opr()),
                     &&dst_rt = get_opr_root_source_opr(dst->owner_opr());
                mgb_assert(dst_rt == src_rt,
                           "%s\nsrc source_opr: %s, dst source_opr: %s\n",
                           err_msg().c_str(), opr_info(src_rt).c_str(),
                           opr_info(dst_rt).c_str());
            }
            if (iter->second & OprPropertyFlag::PRIORITY) {
                mgb_assert(src_attr.priority == dst_attr.priority,
                           "%s\nsrc priority: %d, dst priority %d\n",
                           err_msg().c_str(), src_attr.priority,
                           dst_attr.priority);
            }
        }
    }

    {
        bool suc = true;
        SmallVector<std::string> fail_chks;
        if (m_var_replace_check_flag & VarReplaceCheckFlag::CHECK_INFER_TYPE) {
            auto&& mgr = src->owner_graph()->static_infer_manager();
            auto it0 = mgr.get_infer_type(src), it1 = mgr.get_infer_type(dst);
            using cg::static_infer::InferType;
            // only check wheter inferable
            auto norm = [](InferType::Flag f) -> bool {
                return f & (InferType::RT_STATIC | InferType::CONST);
            };
            if (!(norm(it0.shape) == norm(it1.shape) &&
363
                  norm(it0.value) <= norm(it1.value))) {
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
                suc = false;
                fail_chks.push_back("infer-type");
            }
        }
        if (m_var_replace_check_flag & VarReplaceCheckFlag::CHECK_DTYPE) {
            if (src->dtype() != dst->dtype()) {
                suc = false;
                fail_chks.push_back("dtype");
            }
        }
        if (m_var_replace_check_flag & VarReplaceCheckFlag::CHECK_SHAPE) {
            if (!(src->shape().eq_shape(dst->shape()))) {
                suc = false;
                fail_chks.push_back("shape");
            }
        }
        if (!suc) {
            std::string fail_msg = "{";
            for (size_t i = 0; i < fail_chks.size(); i++) {
                fail_msg += fail_chks[i];
                if (i < fail_chks.size() - 1) {
                    fail_msg += ",";
                }
            }
            fail_msg += "}";
            mgb_throw_raw(
                    cg::OperatorNodeExcExtraInfo::ExcMaker{src->owner_opr()}
                            .make<InternalError>(ssprintf(
                                    "%s mismatch for replace_var: %s",
                                    fail_msg.c_str(),
                                    cg::dump_var_info({src, dst}).c_str())));
        }
    }

    if (src->has_name_set() && !dst->has_name_set()) {
        dst->name(src->name());
    }
    (*m_var_replace_map)[src] = dst;
    // dst should be considered as newly inserted, and previous replace
    // record should be ignored
    m_var_replace_map->erase(dst);

#if MGB_ENABLE_LOGGING
    if (msg && m_owner_optimizer->verbosity()) {
408 409 410 411 412 413 414 415 416 417 418
        m_log_msg.append("\n ")
                .append(std::to_string(m_log_nr_item))
                .append(": ")
                .append(src->owner_opr()->cname())
                .append(" => ")
                .append(dst->owner_opr()->cname())
                .append(" (")
                .append(msg)
                .append(")");
    }
    ++m_log_nr_item;
419 420 421
#endif
}

422
size_t OptState::flush_log(const char* title) {
423 424 425 426 427 428 429 430 431 432 433 434
    if (m_owner_optimizer->verbosity() >= 2) {
        if (m_log_msg.empty()) {
            m_log_msg = mgb_cstr_log(" no var replacement logged");
        }
        mgb_log("%s%s", title, m_log_msg.c_str());
        m_log_msg.clear();
    }
    auto ret = m_log_nr_item;
    m_log_nr_item = 0;
    return ret;
}

435 436
void OptState::call_with_opr(OperatorNodeBase* opr,
                             thin_function<void(void)> func,
437 438 439 440 441 442
                             OprPropertyFlag opr_property_flag) {
    auto src_opr = cg::get_opr_root_source_opr(opr);
    auto opr_priority = opr->node_prop().attribute().priority;
    auto stream_prop_type = m_comp_node_opt.stream_prop_type(opr->output(0));
    ThinHashMap<OperatorNodeBase*, OprPropertyFlag> oprs_inserted;

443 444 445 446 447 448 449 450 451 452 453 454 455
    auto swap_properties =
            [&, need_src_opr = opr_property_flag & OprPropertyFlag::SOURCE_OPR,
             need_priority = opr_property_flag & OprPropertyFlag::PRIORITY] {
                if (need_src_opr) {
                    std::swap(m_cur_iter_src_opr, src_opr);
                }
                if (need_priority) {
                    std::swap(m_cur_iter_opr_priority, opr_priority);
                }
                std::swap(m_cur_iter_opr_stream_prop_type, stream_prop_type);
                std::swap(m_opr_property_flag, opr_property_flag);
                std::swap(m_oprs_inserted, oprs_inserted);
            };
456 457 458
    MGB_TRY {
        swap_properties();
        func();
459 460
    }
    MGB_FINALLY({ swap_properties(); });
461 462 463
}

/* ================ RecursiveSubGraphRewriteHelper ================ */
464 465
RecursiveSubGraphRewriteHelper::~RecursiveSubGraphRewriteHelper() noexcept =
        default;
466

467 468
RecursiveSubGraphRewriteHelper::RecursiveSubGraphRewriteHelper(OptState& state)
        : m_opt_state{state}, m_rewriter{state.graph().make_rewriter()} {}
469 470 471 472 473 474 475 476

void RecursiveSubGraphRewriteHelper::apply() {
    using namespace std::placeholders;
    m_opt_state.graph().iter(
            std::bind(&RecursiveSubGraphRewriteHelper::on_opr, this, _1));
    m_rewriter.apply_inplace();
}

477 478
void RecursiveSubGraphRewriteHelper::on_opr(OperatorNodeBase* opr) {
    auto on_new_opr = [this](OperatorNodeBase* opr) {
479 480 481 482 483 484 485 486 487 488 489 490
        auto repl_opr = m_rewriter.auto_replace_outputs(opr);
        return on_new_opr_check_should_process(opr, repl_opr);
    };

    if (!on_new_opr(opr))
        return;

    auto orig_out = get_opr_single_output_var(opr);
    if (!orig_out)
        return;

    mgb_assert(m_opr_stack.empty());
491 492
    m_opr_stack.push_back(
            {orig_out, m_rewriter.get_var(orig_out)->owner_opr()});
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

    bool first = true;
    while (!m_opr_stack.empty()) {
        auto cur_frame = m_opr_stack.back();
        m_opr_stack.pop_back();
        auto cur_opr = cur_frame.opr;
        bool should_process;
        if (first) {
            should_process = true;
            first = false;
        } else {
            should_process = on_new_opr(cur_opr);
        }
        auto cur_out = get_opr_single_output_var(cur_opr);
        mgb_assert(cur_out);
        cur_out = m_rewriter.get_var(cur_out);

        if (should_process) {
            auto trans = process_opr(cur_out);
            if (trans.valid()) {
513 514 515
                m_opr_stack.push_back(
                        {cur_frame.orig_var, trans->result->owner_opr()});
                for (auto i : reverse_adaptor(trans->internal)) {
516 517 518 519 520 521 522 523 524 525 526 527 528 529
                    if (i)
                        m_opr_stack.push_back({i, i->owner_opr()});
                }
                if (trans->msg) {
                    if (!m_log_msg.empty())
                        m_log_msg.push_back(';');
                    m_log_msg.append(trans->msg);
                }
                continue;
            }
        }

        auto src = cur_frame.orig_var;
        if (m_rewriter.get_var(src) != cur_out) {
530
            const char* msg = nullptr;
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
            if (m_opr_stack.empty()) {
                msg = m_log_msg.c_str();
            }
            m_rewriter.replace_var(src, cur_out, msg);
            after_replace_var(src, cur_out);
            if (m_opr_stack.empty()) {
                m_log_msg.clear();
                break;
            }
        }
    }
}

/* ================ GraphOptimizer ================ */

GraphOptimizer::~GraphOptimizer() noexcept = default;

548 549
class GraphOptimizer::VarReplaceMapStorage
        : public UserDataContainer::UserData {
550 551
    MGB_TYPEINFO_OBJ_DECL;

552 553
public:
    ThinHashMap<VarNode*, VarNode*> map;
554 555 556 557 558 559 560 561 562 563
};
MGB_TYPEINFO_OBJ_IMPL(GraphOptimizer::VarReplaceMapStorage);

GraphOptimizer& GraphOptimizer::add_pass(std::unique_ptr<Pass> pass) {
    mgb_assert(!pass->m_owner_optimizer);
    pass->m_owner_optimizer = this;
    m_passes.emplace_back(std::move(pass));
    return *this;
}

564
SubGraph GraphOptimizer::apply(const SubGraph& graph) const {
565 566 567 568 569 570 571 572
    RealTimer timer;
    OptState state{this, graph};

    size_t tot_nr_replace = 0;

    // first update output var shapes of all oprs
    state.graph().iter(cg::update_output_var_shapes);

573
    auto&& opt = graph.comp_graph()->options();
574
    auto orig_setting = opt.graph_opt_level;
575
    Pass* cur_pass = nullptr;
576 577
    MGB_MARK_USED_VAR(cur_pass);
    MGB_TRY {
578
        for (auto&& i : m_passes) {
579 580 581 582 583
            state.set_var_replace_check_flag(VarReplaceCheckFlag::CHECK_ALL);
            cur_pass = i.get();
            opt.graph_opt_level = 1;
            i->apply(state);
            tot_nr_replace += state.flush_log(
584 585
                    mgb_ssprintf_log("apply optimization pass %s:", i->name())
                            .c_str());
586
        }
587 588
    }
    MGB_CATCH(std::exception & exc, {
589
        mgb_log_error("error while applying optimization pass %s: %s",
590
                      cur_pass->name(), exc.what());
591 592 593
        opt.graph_opt_level = orig_setting;
        throw;
    })
594
    MGB_FINALLY(opt.graph_opt_level = orig_setting);
595
    if (verbosity() >= 1) {
596 597
        mgb_log_debug(
                "graph optimization: applied %zu passes, "
598 599 600 601 602 603
                "total %zu var(s) replaced; time=%.2fms",
                m_passes.size(), tot_nr_replace, timer.get_msecs());
    }
    return state.graph();
}

604
const GraphOptimizer& GraphOptimizer::apply_inplace(VarNodeArray& vars) const {
605 606 607 608 609 610 611
    if (m_passes.empty()) {
        // this check is necessary, since OptState would clear
        // var_replace_map()
        return *this;
    }

    auto g = apply({{vars.begin(), vars.end()}});
612
    for (size_t i = 0; i < vars.size(); ++i) {
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
        vars[i] = g.endpoint_vars()[i].node();
    }
    return *this;
}

GraphOptimizer& GraphOptimizer::add_preset_passes(
        bool after_grad, const OptimizeForInferenceOptions* inference_opt,
        const ComputingGraph::Options* comp_graph_opt) {
    auto cv_type = inference_opt ? ConstVarType::IMMUTABLE_AND_PARAM
                                 : ConstVarType::IMMUTABLE;
    if (inference_opt) {
        add_pass<ConvertBatchNormToElemwisePass>();
    }
    if (!after_grad || inference_opt) {
        add_pass<CondExecConstPredicateFolding>();
    }
    if (after_grad || inference_opt) {
        add_pass<RemoveNonComputingOprPass>();
    }
    add_pass<DelayBroadcastPass>();
    add_pass<ExpandFusedArithPass>();
    add_pass<NormalizeArithChainPass>();
    if (inference_opt) {
        add_pass<ParamRedistributePass>();
        add_pass<ParamFusePass>();
    }
    add_pass<ArithMulDistributePass>();
    add_pass<ReorderArithChainPass>(cv_type);

    add_pass<ArithFusePass>();
    // reorder again because shapes of fused oprs might change
    add_pass<ReorderArithChainPass>(cv_type);
    add_pass<FinalArithTransformPass>();
    add_pass<RemoveRedundantTypeCvtPass>();
647
    add_pass<RemoveRedundantCopyPass>();
648 649

#if MGB_JIT
650 651 652 653 654 655 656 657 658 659 660 661
    using JITConfig = cg::ComputingGraph::Options::GraphOpt::JITConfig;
    int jit_opt_level = 0;
    JITConfig jit_config;

    // for more detail on what is happening here, see comments on the
    // constuctor of class JITFusionPass in fusion_pass.h
    if (comp_graph_opt) {
        jit_opt_level = comp_graph_opt->graph_opt.jit;
        if (comp_graph_opt->graph_opt_level >= 3) {
            jit_opt_level = std::max(jit_opt_level, 1);
        }
        jit_config = comp_graph_opt->graph_opt.jit_config;
662
    }
663 664
    bool need_jit = (jit_opt_level > 0) || jit_config.enabled();

665 666 667 668 669 670 671 672 673 674 675 676
    if (need_jit && after_grad) {
        add_pass<gopt::RecompTypeCvtPass>();
    }
#endif

    // combine astype and reduce.
    // Note: apply this pass before JITFusion, so the TypeCvt which
    // read by both Reduce and Elemwise could be fused correctly.
    add_pass<CombineAstypeAndReducePass>();

#if MGB_JIT
    if (need_jit) {
677
        add_pass<gopt::JITFusionPass>(after_grad, jit_opt_level, jit_config);
678 679 680
    }
#endif

681 682
    if (inference_opt) {
        add_pass<ParamFusePass>();
683
        add_passes_for_optimize_options(*inference_opt);
684 685
    }

686 687 688 689 690
    if (inference_opt) {
        // merge params to reduce loading time and graph overhead
        add_pass<ParamMergePass>();
        add_pass<FuseDeconvCvtPass>();
    }
691 692 693 694 695

    if (inference_opt) {
        // remove shape hint after inference optimization
        add_pass<RemoveShapeHintPass>();
    }
696 697 698 699
    return *this;
}

const ThinHashMap<VarNode*, VarNode*>& GraphOptimizer::var_replace_map(
700 701 702 703
        ComputingGraph& graph) {
    auto storage =
            graph.options()
                    .user_data.get_user_data_or_create<VarReplaceMapStorage>();
704 705 706
    return storage->map;
}

707 708 709
VarNode* GraphOptimizer::var_replace_lookup(VarNode* var) {
    auto&& map = var_replace_map(*(var->owner_graph()));
    for (;;) {
710 711 712 713 714 715 716
        auto iter = map.find(var);
        if (iter == map.end())
            return var;
        var = iter->second;
    }
}

717
const GraphOptimizer& GraphOptimizer::add_passes_for_optimize_options(
718
        const cg::GraphCommonOptimizeOptions& options) {
719 720 721 722 723 724
    return add_passes_for_optimize_options(
            const_cast<cg::GraphCommonOptimizeOptions&>(options));
}

const GraphOptimizer& GraphOptimizer::add_passes_for_optimize_options(
        cg::GraphCommonOptimizeOptions& options, bool reset) {
725
    bool need_param_fuse = false;
726 727 728 729 730 731 732

#define cb(_option, _passes)             \
    if (options.has_set_##_option()) {   \
        _passes need_param_fuse = true;  \
        if (reset) {                     \
            options.disable_##_option(); \
        }                                \
733
    }
734 735 736 737 738

    cb(fuse_preprocess, {
        add_pass(FuseNCHW4Int8Preprocess::make());
        add_pass<FuseWarpPerspectiveDimshufflePass>();
    });
739 740 741
    cb(f16_io_comp, { add_pass(ConvertF32ToF16Pass::make(false)); });
    cb(f16_io_f32_comp, { add_pass(ConvertF32ToF16Pass::make(true)); });

742 743 744 745 746 747 748
    cb(nchw4, {
        add_pass<FuseConvBiasNonlinPass>();
        add_pass<FuseConvBiasZPass>();
        add_pass(EnableNCHW4Pass::make_nchw4_converter());
        add_pass<ShuffleShuffleRemovePass>();
        add_pass<RemoveRedundantTypeCvtPass>();
    });
749
    cb(nhwcd4, {
750
        add_pass<FuseConvBiasNonlinPass>();
751
        add_pass(ConvertFormatPass::make_nhwcd4_converter());
752
    });
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
    cb(nchw88, {
        add_pass<FuseConvBiasNonlinPass>();
        add_pass(EnableNchwxxPass::make_nchwxx_converter(8));
        add_pass<ShuffleShuffleRemovePass>();
    });
    cb(nchw44, {
        add_pass<FuseConvBiasNonlinPass>();
        add_pass(EnableNchwxxPass::make_nchwxx_converter(4));
        add_pass<ShuffleShuffleRemovePass>();
    });
    cb(nchw44_dot, {
        add_pass<FuseConvBiasNonlinPass>();
        add_pass(EnableNchw44DotPass::make_nchw44_dot_converter());
        add_pass<ShuffleShuffleRemovePass>();
    });
768
    cb(nchw32, {
769
        add_pass<FuseConvBiasNonlinPass>();
770
        add_pass<FuseConvBiasZPass>();
771
        add_pass(EnableNCHW4Pass::make_nchw4_converter());
772 773 774
        add_pass(EnableTensorCorePass::make_tensorcore_converter());
        add_pass<ShuffleShuffleRemovePass>();
        add_pass<RemoveRedundantTypeCvtPass>();
775
        add_pass(FuseNCHW4Int8Preprocess::make());
776
        add_pass<FuseWarpPerspectiveDimshufflePass>();
777
#if CUDA_VERSION >= 10020
778
        add_pass<FoldingConvBiasDimshufflePass>();
779
#endif
780 781
    });
    cb(chwn4, {
782 783
        add_pass<FuseConvBiasNonlinPass>();
        add_pass<FuseConvBiasZPass>();
784
        add_pass(EnableNCHW4Pass::make_nchw4_converter());
785 786 787
        add_pass(EnableCHWN4Pass::make_chwn4_converter());
        add_pass<ShuffleShuffleRemovePass>();
        add_pass<RemoveRedundantTypeCvtPass>();
788
    });
789 790 791 792 793 794 795 796 797
    cb(nchw64, {
        add_pass<FuseConvBiasNonlinPass>();
        add_pass<PaddingChannelPass>();
        add_pass<FuseConvBiasZPass>();
        add_pass(EnableNCHW64Pass::make_nchw64_converter());
        add_pass<ShuffleShuffleRemovePass>();
        add_pass<RemoveRedundantTypeCvtPass>();
        add_pass(FuseNCHW4Int8Preprocess::make());
        add_pass<FuseWarpPerspectiveDimshufflePass>();
798
#if CUDA_VERSION >= 10020
799
        add_pass<FoldingConvBiasDimshufflePass>();
800
#endif
801
    });
802

803 804
    cb(fuse_conv_bias_nonlinearity, { add_pass<FuseConvBiasNonlinPass>(); });
    cb(fuse_conv_bias_with_z, {
805 806
        add_pass<FuseConvBiasNonlinPass>();
        add_pass<FuseConvBiasZPass>();
807 808 809 810
    });

#undef cb

811 812
    if (need_param_fuse) {
        add_pass<ParamFusePass>();
813
    }
814
    return *this;
815 816
}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
const GraphOptimizer& GraphOptimizer::add_passes_for_graph_tuning_options(
        const GraphTuningOptions& options) {
    bool need_param_fuse = false;

#define cb(_options, _passes)           \
    if (options.has_set_##_options()) { \
        _passes need_param_fuse = true; \
    }

    cb(layout_transform, {
        add_pass<FuseConvBiasNonlinPass>();
        add_pass<FuseConvBiasZPass>();
        auto profiler = ProfilerBase::make_profiler();
        std::unique_ptr<SolverBase> solver{
                new DynamicProgrammingSolver(std::move(profiler))};
        auto ctx = LayoutTransformContext::make(options.target);
        add_pass<LayoutTransformPass>(std::move(ctx), std::move(solver));
        add_pass<ShuffleShuffleRemovePass>();
        add_pass(FuseNCHW4Int8Preprocess::make());
        add_pass(FuseNCHW4Int8Preprocess::make());
        add_pass<FuseWarpPerspectiveDimshufflePass>();
#if CUDA_VERSION >= 10020
        add_pass<FoldingConvBiasDimshufflePass>();
#endif
    });
#undef cb

    if (need_param_fuse) {
        add_pass<ParamFusePass>();
        add_pass<ParamMergePass>();
    }
    return *this;
}

851 852
/* ================ ConstVarPropogateBase ================ */

853
ConstVarPropogate::AddOprResult ConstVarPropogate::add_opr(
854
        OperatorNodeBase* opr) {
855
    using ProfFlag = OperatorNodeBase::NodeProp::Flag;
856
    auto&& info = m_oprinfo[opr];
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
    if (info.processed)
        return info.result;
    info.processed = true;

#if MGB_ENABLE_JSON
    (*opr->to_json_extra_json)["gopt::cvprop"] = json::Bool::make(false);
#endif

    AddOprResult ret{false, false, false};
    auto make_ret = [&ret, &info]() {
        info.result = ret;
        return ret;
    };

    if (is_const_var(m_const_var_type, opr)) {
        auto sz = var_mem_size(opr->output(0));
873 874
        mgb_assert(sz || opr->output(0)->contain_flag(
                                 VarNode::Flag::ALLOW_EMPTY_SHAPE));
875 876 877 878 879 880 881 882
        info.is_const = true;
        info.max_size = sz;
        return make_ret();
    }

    if (opr->input().empty())
        return make_ret();

883 884
    if (opr->node_prop().contain(ProfFlag::FORCE_UPDATE_INPUT_VAR |
                                 ProfFlag::IMPURE_FUNC)) {
885 886 887 888 889
        return make_ret();
    }

    size_t max_input_size = 0;
    ret.all_const_inp = true;
890
    for (auto i : opr->input()) {
891 892 893 894 895 896 897
        auto io = i->owner_opr();
        auto iter = m_oprinfo.find(io);
        if (iter == m_oprinfo.end()) {
            add_opr(io);
            iter = m_oprinfo.find(io);
            mgb_assert(iter != m_oprinfo.end());
        }
898
        auto&& src = iter->second;
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
        if (src.is_const) {
            update_max(max_input_size, src.max_size);
            ret.has_const_inp = true;
            if (!is_const_var(m_const_var_type, i->owner_opr())) {
                ret.has_midconst_inp = true;
            }
        } else {
            ret.all_const_inp = false;
        }
    }
    if (ret.all_const_inp) {
#if MGB_ENABLE_JSON
        (*opr->to_json_extra_json)["gopt::cvprop"] = json::Bool::make(true);
#endif
        info.max_size = max_input_size;
        info.is_const = true;
    }
    return make_ret();
}

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}