subtensor.cpp 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#include "megbrain/imperative/ops/autogen.h"
#include "megbrain/imperative/proxy_graph_detail.h"
#include "megbrain/opr/basic_arith.h"
#include "megbrain/opr/internal/indexing_helper.h"
#include "megbrain/opr/internal/megdnn_opr_wrapper.h"
#include "megbrain/opr/io.h"
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/opr/utility.h"
#include "megbrain/tensor.h"

#include "../algo_chooser.h"
#include "../blob_manager_impl.h"
#include "../dnn_op_helper.h"
#include "../op_trait.h"

using namespace mgb::opr::indexing;
namespace mgb::imperative {

namespace {
namespace subtensor {

auto get_index(
        const VarNodeArray& inputs,
        const std::vector<std::tuple<int8_t, bool, bool, bool, bool>>& mask,
        const std::vector<std::tuple<int32_t, int32_t, int32_t, int32_t>>& slice) {
    size_t length = mask.size();
    auto graph = inputs[0]->owner_graph();
    auto comp_node = inputs[0]->comp_node();
    opr::Subtensor::IndexDesc ret(length);
    auto immutable_node = [&](int val) {
        DTypeScalar scalar = DTypeScalar(static_cast<megdnn::dt_int32>(val));
        return opr::ImmutableTensor::make(*graph, scalar, {comp_node});
    };
    for (size_t i = 0; i < length; ++i) {
        auto&& [axis, b_flag, e_flag, s_flag, idx_flag] = mask[i];
        auto&& [b_val, e_val, s_val, ax_val] = slice[i];
        ret[i].axis = axis;
        if (idx_flag) {
            ret[i].idx = immutable_node(ax_val);
        } else {
            if (b_flag) {
                ret[i].begin = immutable_node(b_val);
            }
            if (e_flag) {
                ret[i].end = immutable_node(e_val);
            }
            if (s_flag) {
                ret[i].step = immutable_node(s_val);
            }
        }
    }
    return ret;
}

auto origin_get_index(
        const VarNodeArray& inputs, size_t vidx,
        const std::vector<std::tuple<int8_t, bool, bool, bool, bool>>& mask) {
    size_t length = mask.size();
    opr::Subtensor::IndexDesc ret(length);
    for (size_t i = 0; i < length; ++i) {
        auto&& [axis, begin, end, step, idx] = mask[i];
        ret[i].axis = axis;
        if (idx) {
            ret[i].idx = inputs[vidx++];
        } else {
            mgb_assert(begin || end || step);
            if (begin)
                ret[i].begin = inputs[vidx++];
            if (end)
                ret[i].end = inputs[vidx++];
            if (step)
                ret[i].step = inputs[vidx++];
        }
    }
    mgb_assert(vidx == inputs.size());
    return ret;
}

TensorLayout deduce_layout(
        TensorLayout src, std::vector<std::tuple<int8_t, bool, bool, bool, bool>> items,
        std::vector<std::tuple<int32_t, int32_t, int32_t, int32_t>> slice_items) {
    auto mod_size = [](int v, int size_ax) -> int {
        if (size_ax == 0)
            return 0;
        return v < 0 ? v + size_ax : v;
    };
87 88

    auto tostr = [](int v) -> std::string { return std::to_string(v); };
89 90 91 92 93 94 95 96 97 98 99 100 101

    for (int i = items.size() - 1; i >= 0; i--) {
        auto&& [axis, b_flag, e_flag, s_flag, idx_flag] = items[i];
        auto&& [b_val, e_val, s_val, ax_val] = slice_items[i];
        int shape_axis = src.shape[axis];
        int slice_step = s_val == INT_MAX ? 1 : s_val;
        int slice_start = b_val == INT_MIN ? 0 : b_val;
        int slice_stop = e_val == INT_MAX ? shape_axis : e_val;
        if (slice_step > 0) {
            slice_start = mod_size(slice_start, shape_axis);
            slice_stop = mod_size(slice_stop, shape_axis);
            slice_stop = std::min(slice_stop, shape_axis);
            slice_start = std::min(slice_start, slice_stop);
102 103 104 105 106 107 108 109
            mgb_assert(
                    (slice_start >= 0 && slice_stop >= slice_start &&
                     slice_stop <= shape_axis),
                    "index out of bound: layout=%s; request begin=%s end=%s step=%s "
                    "axis=%s",
                    src.to_string().c_str(), tostr(slice_start).c_str(),
                    tostr(slice_stop).c_str(), tostr(slice_step).c_str(),
                    tostr(axis).c_str());
110 111 112 113 114 115
        } else {
            slice_start = s_val == INT_MIN ? shape_axis - 1 : b_val;
            slice_start = mod_size(slice_start, shape_axis);
            slice_stop = e_val == INT_MAX ? -1 : mod_size(e_val, shape_axis);
            slice_start = std::min(slice_start, std::max(shape_axis - 1, 0));
            slice_stop = std::min(slice_stop, slice_start);
116 117 118 119 120 121 122 123
            mgb_assert(
                    (slice_step < 0 && slice_start >= 0 && slice_stop <= slice_start &&
                     slice_start < shape_axis && slice_stop >= -1),
                    "index out of bound: layout=%s; request begin=%s end=%s step=%s "
                    "axis=%s",
                    src.to_string().c_str(), tostr(slice_start).c_str(),
                    tostr(slice_stop).c_str(), tostr(slice_step).c_str(),
                    tostr(axis).c_str());
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        }
        int abs_step = std::abs(slice_step);
        if (axis < 0) {
            axis = axis + src.ndim;
        };

        if (idx_flag == true) {
            if (src.ndim == 1) {
                src.shape[0] = 1;
            } else {
                src.remove_axis_inplace(axis);
            }
        } else {
            src.shape[axis] =
                    (std::abs(slice_stop - slice_start) + abs_step - 1) / abs_step;
            src.stride[axis] *= slice_step;
        }
    }
    return src;
}

auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) {
    auto&& op = static_cast<const Subtensor&>(def);
    OperatorNodeConfig config{op.make_name()};
    if (inputs.size() > 1) {
        return opr::Subtensor::make(
                inputs[0], origin_get_index(inputs, 1, op.items), config);
    } else {
        return opr::Subtensor::make(
                inputs[0], get_index(inputs, op.items, op.slice_items), config);
    }
}

std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible(
        const OpDef& def, const SmallVector<LogicalTensorDesc>& inputs) {
    if (inputs.size() >= 2) {
        return proxy_graph_detail::infer_output_attrs_fallible(def, inputs);
    }
    auto&& inp = inputs[0];
    auto& inp_cn = inp.comp_node;
    if (inp.layout.ndim == 0) {
        return {{{TensorLayout{inp.layout.dtype}, inp_cn, {}}}, false};
    }
    auto&& op = static_cast<const Subtensor&>(def);

    auto items = op.items;
    auto slice_itmes = op.slice_items;
    TensorLayout out_layout = deduce_layout(inp.layout, items, slice_itmes);

    return {{{out_layout, inp_cn, {}}}, true};
}

SmallVector<TensorPtr> apply_on_physical_tensor(
        const OpDef& def, const SmallVector<TensorPtr>& inputs,
        SmallVector<LogicalTensorDesc>& output_descs, const bool& validated) {
    CompNode cn = inputs[0]->comp_node();
    auto&& layout = inputs[0]->layout();
    auto&& op = static_cast<const Subtensor&>(def);

    if (inputs.size() > 1) {
        return proxy_graph_detail::apply_on_physical_tensor(
                def, inputs, output_descs, validated);
    }
    auto&& src = inputs[0];
    auto slice_items = op.slice_items;
    auto items = op.items;
    TensorLayout res_layout = deduce_layout(layout, items, slice_items);
    if (res_layout.is_empty()) {
        return {Tensor::make(res_layout, cn)};
    }
    size_t offset = 0;
    size_t dtype_size = layout.dtype.size();
    TensorPtr tensor = src;
    for (int i = items.size() - 1; i >= 0; i--) {
        auto&& [axis, b_flag, e_flag, s_flag, idx_flag] = items[i];
        auto&& [b_val, e_val, s_val, ax_val] = slice_items[i];
        int start = b_val;
        if (idx_flag) {
            ax_val = ax_val < 0 ? layout.shape[axis] + ax_val : ax_val;
            offset += ax_val * layout.stride[axis] * dtype_size;
        } else {
            start = std::max(start, 0);
            offset += start * layout.stride[axis] * dtype_size;
        }
    }

    // memory forward
    return {Tensor::make(src->blob(), src->offset() + offset, res_layout)};
}

SmallVector<VarNode::LayoutConstraintCallback> get_input_layout_constraint(
        const OpDef& def, const SmallVector<TensorPtr>& inputs) {
    SmallVector<VarNode::LayoutConstraintCallback> layout_checker(inputs.size());
    return layout_checker;
}

220
OP_TRAIT_REG(Subtensor, Subtensor)
221 222 223 224 225 226 227 228 229 230
        .apply_on_var_node(apply_on_var_node)
        .infer_output_attrs_fallible(infer_output_attrs_fallible)
        .apply_on_physical_tensor(apply_on_physical_tensor)
        .get_input_layout_constraint(get_input_layout_constraint)
        .fallback();

}  // namespace subtensor
}  // namespace

}  // namespace mgb::imperative