test_optimizer.py 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
from io import BytesIO

import numpy as np
from helpers import MLP, graph_mode

import megengine.functional as F
15
from megengine import load, optimizer, save
16 17 18 19 20 21
from megengine.core import TensorDict, tensor
from megengine.jit import trace
from megengine.test import assertTensorClose


def get_input():
22 23 24
    batch_size, input_dim = 2, 28
    data_shape, label_shape = (batch_size, input_dim), (batch_size,)
    data, label = tensor(dtype=np.float32), tensor(dtype=np.int32)
25 26 27 28 29
    data.set_value(np.random.random(data_shape).astype(np.float32))
    label.set_value(np.random.randint(0, 10, label_shape))
    return data, data_shape, label, label_shape


30 31
@graph_mode("eager", "static")
def test_optimizer_serialization():
32 33
    data, data_shape, label, label_shape = get_input()
    mlp = MLP()
34
    opt = optimizer.SGD(mlp.parameters(), lr=0.01, momentum=0.9)
35 36 37 38 39 40 41 42 43
    slots = TensorDict()
    for param in mlp.parameters():
        slots[param] = np.zeros(param.shape).astype(np.float32)

    pred = mlp(data)
    loss = F.square_loss(pred, label.reshape(-1, 1))
    opt.zero_grad()
    opt.backward(loss)
    opt.step()
44 45 46 47 48 49 50 51 52 53
    for param in mlp.parameters():
        slots[param] = slots[param] * 0.9 + param.grad.numpy()

    with BytesIO() as fout:
        save(opt.state_dict(), fout)
        fout.seek(0)
        state_dict = load(fout)
        opt1 = optimizer.SGD(mlp.parameters(), lr=0.02, momentum=0.8)
        opt1.load_state_dict(state_dict)

54 55 56 57
        data.set_value(np.random.random(data_shape).astype(np.float32))
        label.set_value(np.random.randint(0, 10, label_shape))
        pred = mlp(data)
        loss = F.square_loss(pred, label.reshape(-1, 1))
58 59 60
        opt1.zero_grad()
        opt1.backward(loss)
        orig_params = TensorDict()
61
        for param in mlp.parameters():
62 63
            orig_params[param] = np.copy(param.numpy())
        opt1.step()
64
        for param in mlp.parameters():
65 66 67
            orig_param = orig_params[param]
            slots[param] = slots[param] * 0.9 + param.grad.numpy()
            assertTensorClose(param.numpy(), orig_param - 0.01 * slots[param])
68 69


70 71
def _test_optimizer(opt_str, test_case, check_class, update_lr=False):
    iter_num = 3
72 73
    data, data_shape, label, label_shape = get_input()

74 75 76
    net = MLP()
    opt = getattr(optimizer, opt_str)(net.parameters(), **test_case)
    check_func = check_class(net, **test_case)
77

78 79 80 81 82 83 84 85
    step = 0

    # eager graph
    for i in range(iter_num):
        if update_lr and i == 1:  # change learning rate
            for group in opt.param_groups:
                group["lr"] += 0.01
            check_func.lr += 0.01
86 87
        data.set_value(np.random.random(data_shape).astype(np.float32))
        label.set_value(np.random.randint(0, 10, label_shape))
88
        pred = net(data)
89 90
        loss = F.square_loss(pred, label.reshape(-1, 1))
        opt.zero_grad()
91 92 93 94
        opt.backward(loss)
        ori_params = TensorDict()
        for param in net.parameters():
            ori_params[param] = np.copy(param.numpy())
95
        opt.step()
96 97
        step += 1
        check_func(ori_params, net.parameters(), step)
98

99
    # static graph
100
    @trace
101 102
    def train_func(data, label):
        pred = net(data)
103 104 105
        loss = F.square_loss(pred, label.reshape(-1, 1))
        opt.backward(loss)

106 107 108 109 110
    for i in range(iter_num):
        if update_lr and i == 1:  # change learning rate
            for group in opt.param_groups:
                group["lr"] += 0.01
            check_func.lr += 0.01
111
        opt.zero_grad()
112 113 114 115
        ori_params = TensorDict()
        for param in net.parameters():
            ori_params[param] = np.copy(param.numpy())
        train_func(
116 117 118 119
            np.random.random(data_shape).astype(np.float32),
            np.random.randint(0, 10, label_shape).astype(np.int32),
        )
        opt.step()
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        step += 1
        check_func(ori_params, net.parameters(), step)


def test_sgd():
    class CheckValue:
        def __init__(self, net, **kwarg):
            self.slots = TensorDict()
            for param in net.parameters():
                self.slots[param] = np.zeros(param.shape).astype(np.float32)
            for k, v in kwarg.items():
                setattr(self, k, v)

        def __call__(self, ori_params, new_params, step):
            for param in new_params:
                grad = param.grad.numpy()
                if hasattr(self, "momentum"):
                    self.slots[param] = grad + self.slots[param] * self.momentum
                    delta = -self.lr * self.slots[param]
                else:
                    delta = -self.lr * grad
                assertTensorClose(param.numpy(), ori_params[param] + delta)

    cases = [
        {"momentum": 0.9, "lr": 0.01},  # SGD with momentum
        {"lr": 0.01},  # simple SGD
        {"weight_decay": 0.1, "lr": 0.01},  # with weight_decay
    ]
    for case in cases:
        _test_optimizer("SGD", case, CheckValue)
        _test_optimizer("SGD", case, CheckValue, update_lr=True)
151 152


153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
def test_adam():
    class CheckValue:
        def __init__(self, net, **kwarg):
            self.m_slots = TensorDict()
            self.v_slots = TensorDict()
            for param in net.parameters():
                self.m_slots[param] = np.zeros(param.shape).astype(np.float32)
                self.v_slots[param] = np.zeros(param.shape).astype(np.float32)
            for k, v in kwarg.items():
                setattr(self, k, v)

        def __call__(self, ori_params, new_params, step):
            for param in new_params:
                grad = param.grad.numpy()
                m = self.m_slots[param]
                v = self.v_slots[param]
                m *= self.betas[0]
                m += (1 - self.betas[0]) * grad
                v *= self.betas[1]
                v += (1 - self.betas[1]) * grad * grad
                delta = (m / (1 - self.betas[0] ** step)) / (
                    np.sqrt(v / (1 - self.betas[1] ** step)) + self.eps
                )
                assertTensorClose(param.numpy(), ori_params[param] - self.lr * delta)

    cases = [
        {"betas": (0.8, 0.9), "eps": 1e-04, "lr": 0.01},
        {
            "betas": (0.8, 0.9),
            "eps": 1e-04,
            "lr": 0.01,
            "weight_decay": 0.1,
        },  # with weight_decay
    ]
    for case in cases:
        _test_optimizer("Adam", case, CheckValue)
        _test_optimizer("Adam", case, CheckValue, update_lr=True)