batch_norm.cpp 11.8 KB
Newer Older
1 2 3 4
/**
 * \file src/opr/impl/dnn/batch_norm.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/opr/dnn/batch_norm.h"
#include "megbrain/opr/io.h"
#include "megbrain/graph/grad_impl.h"
15 16
#include "megbrain/opr/basic_arith.h"
#include "megbrain/opr/tensor_manip.h"
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

#include "../internal/megdnn_opr_wrapper.inl"

using namespace mgb;
using namespace opr;

namespace mgb { namespace opr { namespace intl {
template<>
struct AutoAddWorkspaceNeedLimitGetter<megdnn::BNForward> {
    static constexpr bool val = true;
};

template<>
struct AutoAddWorkspaceNeedLimitGetter<megdnn::BNBackward> {
    static constexpr bool val = true;
};
} } } // mgb::opr::intl

MGB_DYN_TYPE_OBJ_FINAL_IMPL(BatchNormForward);

BatchNormForward::BatchNormForward(VarNode *x,
        VarNode *scale, VarNode *bias,
        VarNode *mean, VarNode *variance,
        const Param &param,
        const OperatorNodeConfig &config):
    Super{x->owner_graph(), config, "batch_norm",
          {x, scale, bias, mean, variance}}
{
45
    if(owner_graph()->options().no_force_inplace) {
46 47 48
        m_force_inplace = false;
    }

M
Megvii Engine Team 已提交
49
    if (m_force_inplace && param.fwd_mode == Param::FwdMode::TRAINING) {
50 51 52 53 54
        auto check_dest = [&](VarNode* dest) {
            auto dest_opr = dest->owner_opr();
            mgb_throw_if(!(dest_opr->same_type<SharedDeviceTensor>() ||
                    dest_opr->same_type<VolatileSharedDeviceTensor>()),
                    GraphError,
55 56
                    "mean and variance in training mode BatchNorm must be"
                    "SharedDeviceTensor or VolatileSharedDeviceTensor;"
57
                    "got %s{%s} actually",
58 59 60 61 62
                    dest_opr->cname(), dest_opr->dyn_typeinfo()->name);
        };
        check_dest(mean);
        check_dest(variance);
    }
63 64 65 66 67

    init_megdnn_opr(*this, param);

    add_input({x, scale, bias, mean, variance});

M
Megvii Engine Team 已提交
68 69 70 71 72 73 74 75
    if (param.fwd_mode == Param::FwdMode::INFERENCE) {
        auto mark_empty_var = [&](VarNode *var) {
            var->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE)
                .add_flag(VarNode::Flag::VOLATILE_CONTENT);
        };
        mark_empty_var(output(0));
        mark_empty_var(output(1));
    } else if (m_force_inplace) {
76 77 78
        output(0)->
            set_fwd_in2out_writable_force(input(3)).
            add_flag(VarNode::Flag::NO_MEM_RECLAIM);
79

80 81 82 83
        output(1)->
            set_fwd_in2out_writable_force(input(4)).
            add_flag(VarNode::Flag::NO_MEM_RECLAIM);
    }
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
}

BatchNormForward::BatchNormForward(VarNode *x,
        VarNode *scale, VarNode *bias,
        const Param &param,
        const OperatorNodeConfig &config):
    Super{x->owner_graph(), config, "batch_norm",
          {x, scale, bias}}
{
    init_megdnn_opr(*this, param);

    add_input({x, scale, bias});
    auto mark_empty_var = [&](VarNode *var) {
        var->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE)
            .add_flag(VarNode::Flag::VOLATILE_CONTENT);
    };
    mark_empty_var(output(0));
    mark_empty_var(output(1));
}

SymbolVarArray BatchNormForward::make(SymbolVar x,
        SymbolVar scale, SymbolVar bias,
        SymbolVar mean, SymbolVar variance,
        const Param &param,
        const OperatorNodeConfig &config) {
    auto&& out = x.node()
                    ->owner_graph()
                    ->insert_opr(std::make_unique<BatchNormForward>(
                        x.node(), scale.node(), bias.node(),
                        mean.node(), variance.node(), param, config))
                    ->output();
    SymbolVarArray ret(out.size());
    for (size_t i = 0; i < ret.size(); i++) {
        ret[i] = out[i];
    }
    return ret;
}

SymbolVarArray BatchNormForward::make(SymbolVar x,
        SymbolVar scale, SymbolVar bias,
        const Param &param,
        const OperatorNodeConfig &config) {
    auto&& out = x.node()
                    ->owner_graph()
                    ->insert_opr(std::make_unique<BatchNormForward>(
                        x.node(), scale.node(), bias.node(),
                        param, config))
                    ->output();
    SymbolVarArray ret(out.size());
    for (size_t i = 0; i < ret.size(); i++) {
        ret[i] = out[i];
    }
    return ret;
}

cg::OperatorNodeBase::NodeProp*
BatchNormForward::do_make_node_prop() const {
    auto ret = Super::do_make_node_prop();
142
    if (need_stats() && m_force_inplace) {
143 144 145 146 147 148 149
        ret->add_flag(NodeProp::Flag::FORCE_UPDATE_INPUT_VAR);
    }
    return ret;
}

void BatchNormForward::scn_do_execute() {
    auto &&x = input(0)->dev_tensor();
150 151 152
    auto &&y = output(4)->dev_tensor();
    mgb_assert(x.layout().is_contiguous() &&
               y.layout().is_contiguous());
M
Megvii Engine Team 已提交
153
    if (need_stats()) {
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        auto &&o0 = output(0)->dev_tensor(),
             &&o1 = output(1)->dev_tensor(),
             &&i0 = input(3)->dev_tensor(),
             &&i1 = input(4)->dev_tensor();
        mgb_assert(o0.raw_ptr() && o1.raw_ptr()); // non-empty tensor
        mgb_assert(o0.comp_node() == i0.comp_node() &&
                   o1.comp_node() == i1.comp_node() &&
                   o0.layout().eq_layout(i0.layout()) &&
                   o1.layout().eq_layout(i1.layout()));
        if (!m_force_inplace) {
            if (o0.raw_ptr() != i0.raw_ptr()) {
                o0.copy_from_fixlayout(i0);
            }
            if (o1.raw_ptr() != i1.raw_ptr()) {
                o1.copy_from_fixlayout(i1);
            }
        } else {
            mgb_assert(o0.raw_ptr() == i0.raw_ptr()
                    && o1.raw_ptr() == i1.raw_ptr());
        }
    }
175 176
    auto scale = input(1)->dev_tensor().as_megdnn();
    auto bias = input(2)->dev_tensor().as_megdnn();
M
Megvii Engine Team 已提交
177 178 179 180 181 182 183 184
    megdnn::TensorND mean, variance;
    if (param().fwd_mode == Param::FwdMode::INFERENCE) {
        mean = input(3)->dev_tensor().as_megdnn();
        variance = input(4)->dev_tensor().as_megdnn();
    } else {
        mean = output(0)->dev_tensor().as_megdnn();
        variance = output(1)->dev_tensor().as_megdnn();
    }
185 186
    auto save_mean = output(2)->dev_tensor().as_megdnn();
    auto save_variance = output(3)->dev_tensor().as_megdnn();
187
    auto workspace = intl::get_megdnn_workspace_from_var(output().back());
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    megdnn_opr()->exec(x.as_megdnn(), scale, bias, mean, variance,
        save_mean, save_variance, y.as_megdnn(), workspace);
}

void BatchNormForward::add_input_layout_constraint() {
    mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
}

void BatchNormForward::get_output_var_shape(
        const TensorShapeArray &inp_shape,
        TensorShapeArray &out_shape) const {
    out_shape[4] = inp_shape[0];
    for (size_t i = 0; i < 4; ++ i) {
        out_shape[i] = inp_shape[1];
    }
M
Megvii Engine Team 已提交
203
    if (!need_stats()) {
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
        out_shape[0] = out_shape[1] = {0};
    }
}

size_t BatchNormForward::get_workspace_size_bytes(
        const TensorShapeArray &input_shapes,
        const TensorShapeArray &output_shapes) const {
#define in(x) {input_shapes[x], input(x)->dtype()}
#define out(x) {output_shapes[x], output(x)->dtype()}
    return megdnn_opr()->get_workspace_in_bytes(
            in(0), in(1), in(2), out(0), out(1), out(2), out(3), out(4));
#undef in
#undef out
}

void BatchNormForward::init_output_static_infer_desc() {
    Super::set_nr_managed_outputs(this->output().size() - 1);
    Super::init_output_static_infer_desc();
    this->init_output_static_infer_desc_workspace(
            intl::AutoAddWorkspaceNeedLimitGetter<megdnn::BNForward>::val);
}

void BatchNormForward::init_output_dtype() {
    size_t nr_inp = input().size();
    mgb_assert(input(0)->dtype().category() == input(1)->dtype().category());
    for (size_t i = 2; i < nr_inp; ++ i) {
        mgb_assert(input(1)->dtype() == input(i)->dtype());
    }
    output(4)->dtype(input(0)->dtype());
    for (size_t i = 0; i < 4; ++ i) {
        output(i)->dtype(input(1)->dtype());
    }
}

238
void BatchNormForward::mem_plan_fwd_in2out_writable() {
M
Megvii Engine Team 已提交
239
    if (need_stats() && !m_force_inplace) {
240 241 242 243 244 245
        // TODO: testing
        output(0)->set_fwd_in2out_writable(input(3));
        output(1)->set_fwd_in2out_writable(input(4));
    }
}

246
#if MGB_ENABLE_GRAD
247
MGB_IMPL_OPR_GRAD(BatchNormForward) {
248 249
    mgb_assert(wrt_idx < 5, "wrt_idx %zu is out of range", wrt_idx);
    VarNodeArray ret(opr.input().size(), nullptr);
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    SymbolVarArray grad;
    switch (opr.param().fwd_mode) {
    case BatchNorm::Param::FwdMode::TRAINING:
        grad = BatchNormBackward::make(
                opr.input(0), out_grad[4],
                opr.output(2), opr.output(3),
                opr.input(1), opr.param());
        for (size_t i = 0; i < 3; ++ i) {
            ret[i] = grad[(i + 2) % 3].node();
        }
        return ret;
    case BatchNorm::Param::FwdMode::INFERENCE:
        auto sqrt_var = PowC::make((SymbolVar{opr.input(4)}
                        + static_cast<dt_float32>(opr.param().epsilon)), 0.5, opr.config());
        auto d_bn_scale_unreduced = SymbolVar{out_grad[4]} *
                            (SymbolVar{opr.input(0)} - SymbolVar{opr.input(3)}) / sqrt_var;
        auto d_bn_scale = Reduce::make(d_bn_scale_unreduced,
                            Reduce::Param::Mode::SUM, GetVarShape::make(opr.input(1)));
        auto d_bn_bias = Reduce::make(out_grad[4],
                            Reduce::Param::Mode::SUM, GetVarShape::make(opr.input(2)));
        auto dx = SymbolVar{out_grad[4]} * SymbolVar{opr.input(1)} / sqrt_var;

        ret[0] = dx.node();
        ret[1] = d_bn_scale.node();
        ret[2] = d_bn_bias.node();
        return ret;
276
    }
277
    return ret;
278
}
279
#endif
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

MGB_DYN_TYPE_OBJ_FINAL_IMPL(BatchNormBackward);

BatchNormBackward::BatchNormBackward(VarNode *x,
        VarNode *y_grad, VarNode *save_mean,
        VarNode* save_variance, VarNode *scale,
        const Param &param, const OperatorNodeConfig &config):
    Super({x->owner_graph(), config, "batch_norm_bwd",
            {x, y_grad, save_mean, save_variance, scale}},
            0, true)
{
    init_megdnn_opr(*this, param);
    add_input({x, y_grad, save_mean, save_variance, scale});
}

SymbolVarArray BatchNormBackward::make(SymbolVar x,
        SymbolVar y_grad, SymbolVar save_mean,
        SymbolVar save_variance, SymbolVar scale,
        const Param &param,
        const OperatorNodeConfig &config) {
    auto&& out = x.node()
                    ->owner_graph()
                    ->insert_opr(std::make_unique<BatchNormBackward>(
                        x.node(), y_grad.node(), save_mean.node(),
                        save_variance.node(), scale.node(), param, config))
                    ->output();
    SymbolVarArray ret(out.size());
    for (size_t i = 0; i < ret.size(); i++) {
        ret[i] = out[i];
    }
    return ret;
}

void BatchNormBackward::init_output_static_infer_desc() {

    using namespace cg::static_infer;
    auto &&mgr = owner_graph()->static_infer_manager();

    mgr.register_shape_infer(output(0),
            ShapeInferDesc::make_identity(input(4)));
    mgr.register_shape_infer(output(1),
            ShapeInferDesc::make_identity(input(4)));
    mgr.register_shape_infer(output(2),
            ShapeInferDesc::make_identity(input(0)));
    this->init_output_static_infer_desc_workspace(
            intl::AutoAddWorkspaceNeedLimitGetter<megdnn::BNBackward>::val);
}

void BatchNormBackward::init_output_dtype() {
    mgb_assert(input(0)->dtype().category() == input(2)->dtype().category());
    mgb_assert(input(0)->dtype() == input(1)->dtype());
    mgb_assert(input(2)->dtype() == input(3)->dtype());
    mgb_assert(input(2)->dtype() == input(4)->dtype());
    output(0)->dtype(input(2)->dtype());
    output(1)->dtype(input(2)->dtype());
    output(2)->dtype(input(0)->dtype());
}

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}