comp_node.cpp 28.9 KB
Newer Older
1 2 3 4
/**
 * \file src/core/impl/comp_node/cuda/comp_node.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 */

#include "./comp_node.h"
#include "megbrain/comp_node_env.h"
#include "megbrain/utils/thread.h"

#include <string>

using namespace mgb;

#if MGB_CUDA

#include "megbrain/comp_node/alloc.h"

#include <cctype>
26
#include <cstdio>
27 28 29 30 31 32 33 34

#include <thread>

#include <cuda_runtime.h>

using CudaCompNodeImpl = CudaCompNode::CompNodeImpl;

namespace {
35 36 37 38 39 40 41
size_t get_min_system_memory(size_t available) {
    if (available < (1u << 31)) {
        // 225MiB
        return 225 * 1024 * 1024;
    } else {
        // max(300 MiB, 0.05 * available)
        return std::max<size_t>(300 * 1024 * 1024, available / 20);
42
    }
43 44 45 46 47 48 49 50 51
}
using CudaHostFunc = megdnn::thin_function<void()>;
void CUDART_CB cuda_host_func_caller(void* ud) {
    mgb_assert(ud);
    CudaHostFunc* func_ptr = reinterpret_cast<CudaHostFunc*>(ud);
    MGB_TRY { (*func_ptr)(); }
    MGB_FINALLY(delete func_ptr;);
}
}  // anonymous namespace
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

namespace mgb {
namespace mem_alloc {
class CudaRawAllocator final : public RawAllocator {
public:
    void* alloc(size_t size) override {
        void* addr;
        cudaError_t cuda_error = cudaMalloc(&addr, size);
        if (cuda_error == cudaSuccess) {
            mgb_assert(addr);
            return addr;
        }
        auto msg = mgb_ssprintf_log(
                "cudaMalloc failed while requesting %zd bytes (%.3fMiB)"
                " of memory; error: %s",
                size, size / (1024.0 * 1024), cudaGetErrorString(cuda_error));
        msg.append(CudaError::get_cuda_extra_info());
        if (cuda_error == cudaErrorMemoryAllocation) {
            mgb_log_error("%s", msg.c_str());
            // clear cuda error
            cudaGetLastError();
            mgb_assert(cudaGetLastError() == cudaSuccess);
            return nullptr;
        }
        mgb_throw_raw(MemAllocError{msg});
    }

    void free(void* ptr) override {
        cudaError_t cuda_error = cudaFree(ptr);
        if (cuda_error == cudaSuccess)
            return;
        auto msg = ssprintf("cudaFree failed for %p: %s", ptr,
                            cudaGetErrorString(cuda_error));
        msg.append(CudaError::get_cuda_extra_info());
        mgb_throw_raw(MemAllocError{msg});
    }

    void get_mem_info(size_t& free, size_t& tot) override {
        cudaError_t cuda_error = cudaMemGetInfo(&free, &tot);
        if (cuda_error == cudaSuccess)
            return;
        auto msg = ssprintf("cudaMemGetInfo failed %s",
                            cudaGetErrorString(cuda_error));
        msg.append(CudaError::get_cuda_extra_info());
        mgb_throw_raw(MegBrainError{msg});
    }
};

100 101 102 103
class CudaHostAllocator : public RawAllocator {
public:
    void* alloc(size_t size) override {
        void* addr;
104 105
        cudaError_t cuda_error =
                cudaHostAlloc(&addr, size, cudaHostAllocDefault);
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        if (cuda_error == cudaSuccess) {
            mgb_assert(addr);
            return addr;
        }
        auto msg = mgb_ssprintf_log(
                "cudaHostAlloc failed while requesting %zd bytes (%.3fMiB)"
                " of pinned host memory; error: %s",
                size, size / (1024.0 * 1024), cudaGetErrorString(cuda_error));
        msg.append(CudaError::get_cuda_extra_info());
        if (cuda_error == cudaErrorMemoryAllocation) {
            mgb_log_error("%s", msg.c_str());
            // clear cuda error
            cudaGetLastError();
            mgb_assert(cudaGetLastError() == cudaSuccess);
            return nullptr;
        }
        mgb_throw_raw(MemAllocError{msg});
    }

    void free(void* ptr) override {
        cudaError_t cuda_error = cudaFreeHost(ptr);
        if (cuda_error == cudaSuccess)
            return;
        auto msg = ssprintf("cudaFreeHost failed for %p: %s", ptr,
                            cudaGetErrorString(cuda_error));
        msg.append(CudaError::get_cuda_extra_info());
        mgb_throw_raw(MemAllocError{msg});
    }

    void get_mem_info(size_t& free, size_t& tot) override {
        free = 0;
        tot = 0;
    }
};

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
class CudaDeviceRuntimePolicy : public DeviceRuntimePolicy {
public:
    CompNode::DeviceType device_type() override {
        return CompNode::DeviceType::CUDA;
    }
    void set_device(int device) override {
        MGB_CUDA_CHECK(cudaSetDevice(device));
    }
    void device_synchronize(int device) override {
        MGB_CUDA_CHECK(cudaSetDevice(device));
        MGB_CUDA_CHECK(cudaDeviceSynchronize());
    }
};

/* ===================== DevMemAlloc  ===================== */
std::unique_ptr<DevMemAlloc> DevMemAlloc::make_cuda_alloc() {
    return std::make_unique<FwdDevMemAlloc>(
            std::make_shared<CudaRawAllocator>());
}
}  // namespace mem_alloc
}  // namespace mgb

/* ===================== CudaCompNodeImpl  ===================== */
164
class CudaCompNode::CompNodeImpl final : public CompNode::Impl {
165 166 167 168 169 170 171
    MGB_DYN_TYPE_OBJ_FINAL_DECL;

    friend class EventImpl;
    friend class CudaCompNode;

    struct DeviceInfo;
    struct StaticData;
172
    static StaticData* sd;
173
    static Spinlock sd_mtx;
174 175 176
#if !MGB_BUILD_SLIM_SERVING
    std::mutex m_update_mem;
#endif
177 178 179 180 181

    //! set to true when m_locator is assigned; set to false if async init
    //! failed
    bool m_initialized = false;
    Locator m_locator, m_locator_logical;
182 183
    mem_alloc::StreamMemAlloc* m_mem_alloc;
    DeviceInfo* m_device_info;
184 185 186 187

    std::unique_ptr<Event> m_sync_event;
    Spinlock m_sync_event_mtx;

188
    void activate() { m_env.cuda_env().activate(); }
189

190
    void init(const Locator& locator, const Locator& locator_logical);
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    void fini();

    //! return whether global finalized, and print warning in such case
    static inline bool check_global_finalized();

    //! enable peer copy from dev0 to dev1
    static void enable_peer_access(int dev0, int dev1);

    static void static_free_device(ImplBase* self, void* ptr) {
        static_cast<CompNodeImpl*>(self)->free_device(ptr);
    }

    static void static_free_host(ImplBase* self, void* ptr) {
        static_cast<CompNodeImpl*>(self)->free_host(ptr);
    }

207 208
public:
    CompNodeImpl() : Impl(static_free_device, static_free_host) {}
209

210 211
    void* alloc_device(size_t size) override {
        activate();
212
#if MGB_BUILD_SLIM_SERVING
213
        return m_mem_alloc->alloc(size);
214
#else
215 216 217 218 219
        void* ptr = m_mem_alloc->alloc(size);
        {
            MGB_LOCK_GUARD(m_update_mem);
            ptr2size[ptr] = size;
            m_used_mem += size;
220
        }
221 222 223
        return ptr;
#endif
    }
224

225
    void free_device(void* ptr);
226

227
    void* alloc_host(size_t size) override;
228

229
    void free_host(void* ptr);
230

231 232 233 234 235 236 237
    void copy_to_host(void* host_ptr, const void* device_ptr,
                      size_t size) override {
        activate();
        MGB_CUDA_CHECK(cudaMemcpyAsync(host_ptr, device_ptr, size,
                                       cudaMemcpyDeviceToHost,
                                       m_env.cuda_env().stream));
    }
238

239 240 241 242 243 244 245
    void copy_to_device(void* device_ptr, const void* host_ptr,
                        size_t size) override {
        activate();
        MGB_CUDA_CHECK(cudaMemcpyAsync(device_ptr, host_ptr, size,
                                       cudaMemcpyHostToDevice,
                                       m_env.cuda_env().stream));
    }
246

247 248
    void peer_copy_to(Impl* dest_impl, void* dest, const void* src,
                      size_t size) override;
249

250 251 252
    size_t get_mem_addr_alignment() override {
        return m_env.property().mem_alignment;
    }
253

254
    std::unique_ptr<Event> create_event(size_t flags) override;
255

256
    void sync() override;
257

258
    MemNode mem_node() override;
259

260 261 262 263 264 265 266 267
    std::pair<size_t, size_t> get_mem_status_bytes() override {
        // explicitly call cuda_env() to ensure async init is finished
        m_env.cuda_env().activate();
        size_t tot, free;
        MGB_CUDA_CHECK(cudaMemGetInfo(&free, &tot));
        free += m_mem_alloc->get_free_memory_dev().tot;
        return {tot, free};
    }
268

269
#if !MGB_BUILD_SLIM_SERVING
270
    std::pair<size_t, size_t> get_free_left_and_right(size_t begin_ptr, size_t end_ptr) override {
271 272
        return m_mem_alloc->get_free_left_and_right(begin_ptr, end_ptr);
    }
273 274 275 276 277

    size_t get_max_block_size_available() {
        activate();
        return m_mem_alloc->get_max_block_size_available();
    }
278 279
#endif

280
    Locator locator() override { return m_locator; }
281

282
    Locator locator_logical() override { return m_locator_logical; }
283

284
    void add_callback(CudaHostFunc&& cb) override {
285
#if CUDART_VERSION >= 10000
286 287 288 289 290 291 292 293 294 295 296
        activate();
        CudaHostFunc* func_ptr = new CudaHostFunc(std::move(cb));
        MGB_TRY {
            MGB_CUDA_CHECK(cudaLaunchHostFunc(m_env.cuda_env().stream,
                                              cuda_host_func_caller,
                                              static_cast<void*>(func_ptr)));
        }
        MGB_CATCH(..., {
            delete func_ptr;
            throw;
        });
297
#else
298 299 300 301
        MGB_MARK_USED_VAR(cb);
        MGB_MARK_USED_VAR(cuda_host_func_caller);
        mgb_throw(MegBrainError,
                  "add_callback only support in cuda10.0 and later version");
302
#endif
303
    }
304

305
    uint64_t get_uid() override { return m_uid; }
306 307

#if !MGB_BUILD_SLIM_SERVING
308
    size_t get_used_memory() override { return m_used_mem; }
309 310
#endif

311 312
private:
    uint64_t m_uid;
313
#if !MGB_BUILD_SLIM_SERVING
314 315
    std::unordered_map<void*, size_t> ptr2size;
    size_t m_used_mem = 0;
316
#endif
317 318 319 320 321 322 323
};
MGB_DYN_TYPE_OBJ_FINAL_IMPL(CudaCompNode::CompNodeImpl);

struct CudaCompNodeImpl::DeviceInfo {
    int dev_num = -1;
    std::unique_ptr<mem_alloc::DevMemAlloc> mem_alloc;

324
    bool init_done() const { return mem_alloc.get(); }
325

326
    void init(const CompNodeEnv& env);
327

328
    void fini() { mem_alloc.reset(); }
329 330 331 332 333 334 335 336 337
};

struct CudaCompNodeImpl::StaticData {
    static constexpr int MAX_NR_COMP_NODE = 1024, MAX_NR_DEVICE = 64;

    std::recursive_mutex mtx;

    mem_alloc::DevMemAlloc::PreAllocConfig prealloc_config;

338
    std::unique_ptr<mem_alloc::SimpleCachingAlloc> host_alloc;
339 340
    CudaCompNode::CompNodeImpl node[MAX_NR_COMP_NODE];
    DeviceInfo dev_info[MAX_NR_DEVICE];
341 342
    int nr_node = 0,          //!< number of loaded node[]
            nr_dev_used = 0;  //!< number of used dev_info[]
343

344 345 346
    StaticData()
            : host_alloc(mem_alloc::SimpleCachingAlloc::make(
                      std::make_unique<mem_alloc::CudaHostAllocator>())) {
347 348
        prealloc_config.max_overhead = 0;
        prealloc_config.alignment = 1;
349
        host_alloc->alignment(1);
350 351 352
    }

    ~StaticData() {
353
        for (int i = 0; i < nr_node; ++i)
354
            node[i].fini();
355
        for (int i = 0; i < nr_dev_used; ++i)
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
            dev_info[i].fini();
    }

    static size_t get_mem_reserve_size() {
        if (auto setting = MGB_GETENV("MGB_CUDA_RESERVE_MEMORY")) {
            if (!strncmp(setting, "b:", 2)) {
                return std::stoull(setting + 2);
            }
            size_t tot, free;
            MGB_CUDA_CHECK(cudaFree(0));
            MGB_CUDA_CHECK(cudaMemGetInfo(&free, &tot));
            return free - get_min_system_memory(free);
        } else {
            return 0;
        }
    }
};
CudaCompNodeImpl::StaticData* CudaCompNodeImpl::sd = nullptr;
Spinlock CudaCompNodeImpl::sd_mtx;

376 377
void CudaCompNodeImpl::init(const Locator& locator,
                            const Locator& locator_logical) {
378 379 380 381
    m_locator = locator;
    m_locator_logical = locator_logical;
    m_initialized = true;

382
#if defined(__linux__) || defined(TARGET_OS_MAC)
383
    FILE* fp;
384 385 386 387 388
    fp = fopen("/dev/urandom", "r");
    mgb_assert(fread(&m_uid, sizeof(m_uid), 1, fp) == 1);
    fclose(fp);
#else
    m_uid = std::chrono::duration_cast<std::chrono::nanoseconds>(
389 390
                    std::chrono::system_clock::now().time_since_epoch())
                    .count();
391 392
#endif

393 394 395 396 397
    auto on_succ = [this](cudaStream_t stream) {
        auto locator = m_locator;
        log_comp_node_created(locator, m_locator_logical);

        MGB_LOCK_GUARD(sd->mtx);
398 399
        DeviceInfo* dev_info = nullptr;
        for (int i = 0; i < sd->nr_dev_used; ++i) {
400 401 402 403 404 405 406 407 408 409
            if (sd->dev_info[i].dev_num == locator.device) {
                dev_info = &sd->dev_info[i];
                break;
            }
        }

        if (!dev_info) {
            dev_info = &sd->dev_info[sd->nr_dev_used];
            dev_info->init(m_env);
            // note: add nr_dev_used only after init succeeds
410
            ++sd->nr_dev_used;
411 412 413 414 415 416 417 418 419 420 421
        }
        m_device_info = dev_info;
        m_mem_alloc =
                dev_info->mem_alloc->add_stream(static_cast<void*>(stream));
    };

    auto on_error = [this](std::exception&) {
        MGB_LOCK_GUARD(sd->mtx);
        m_initialized = false;
    };

422 423
    m_env.init_cuda_async(locator.device, make_comp_node_from_impl(this),
                          {on_succ, on_error});
424 425 426 427 428 429 430 431 432 433 434 435 436
}

void CudaCompNodeImpl::fini() {
    if (!m_initialized)
        return;

    m_sync_event.reset();
    m_env.fini();
    m_mem_alloc = nullptr;
    m_device_info = nullptr;
    m_initialized = false;
}

437
void CudaCompNodeImpl::free_device(void* ptr) {
438 439 440 441
    if (check_global_finalized())
        return;

    activate();
442 443 444
#if !MGB_BUILD_SLIM_SERVING
    {
        MGB_LOCK_GUARD(m_update_mem);
445 446
        mgb_assert(ptr2size.find(ptr) != ptr2size.end(), "ptr %p not found!",
                   ptr);
447 448 449 450
        m_used_mem -= ptr2size.at(ptr);
        ptr2size.erase(ptr);
    }
#endif
451 452 453
    m_mem_alloc->free(ptr);
}

454
void* CudaCompNodeImpl::alloc_host(size_t size) {
455 456
    // need activate because it create cuda cuda context in current device
    activate();
457 458 459 460
    return sd->host_alloc->alloc(size);
}

void CudaCompNodeImpl::free_host(void* ptr) {
461 462
    if (check_global_finalized())
        return;
463 464 465
    sd->host_alloc->free(ptr);
}

466 467
void CudaCompNodeImpl::peer_copy_to(Impl* dest_impl, void* dest,
                                    const void* src, size_t size) {
468
    if (dest_impl->same_type<CudaCompNodeImpl>()) {
469 470 471
        auto&& dst_env =
                static_cast<CudaCompNodeImpl*>(dest_impl)->m_env.cuda_env();
        auto&& src_env = m_env.cuda_env();
472 473
        activate();
        if (dst_env.device == src_env.device) {
474 475
            MGB_CUDA_CHECK(cudaMemcpyAsync(
                    dest, src, size, cudaMemcpyDeviceToDevice, dst_env.stream));
476 477 478
        } else {
            enable_peer_access(src_env.device, dst_env.device);
            enable_peer_access(dst_env.device, src_env.device);
479 480 481
            MGB_CUDA_CHECK(cudaMemcpyPeerAsync(dest, dst_env.device, src,
                                               src_env.device, size,
                                               dst_env.stream));
482 483 484 485
        }
        return;
    }
    mgb_assert(dest_impl->env().property().type == DeviceType::CPU,
486
               "cuda peer_copy_to only implemented for CPU");
487 488 489
    auto copy = [this, dest, src, size]() {
        auto stream = m_env.cuda_env().stream;
        m_env.cuda_env().activate();
490 491
        MGB_CUDA_CHECK(cudaMemcpyAsync(dest, src, size, cudaMemcpyDeviceToHost,
                                       stream));
492 493 494 495 496 497 498 499 500 501 502 503 504 505
        MGB_CUDA_CHECK(cudaStreamSynchronize(stream));
    };
    dest_impl->env().cpu_env().dispatch(copy);
}

MemNode CudaCompNodeImpl::mem_node() {
    // m_device_info would be null before async init finishes; so we just return
    // a prive pointer related to device number here
    return MemNode{sd->dev_info + m_locator.device};
}

void CudaCompNodeImpl::sync() {
    activate();

506 507 508
    // do not use MGB_CUDA_CHECK(cudaStreamSynchronize(m_env->stream)) since
    // other threads may be adding operations into the stream, and we only care
    // about previous operations in current thread. However docs of
509 510 511
    // cudaStreamSynchronize did not describe details of such condition, so we
    // use manual event implementation

512
    Event* event;
513 514 515 516 517 518 519 520 521 522 523
    {
        MGB_LOCK_GUARD(m_sync_event_mtx);
        if (!m_sync_event)
            m_sync_event = create_event(0);
        event = m_sync_event.get();
    }
    event->record();
    event->host_wait();
}

void CudaCompNodeImpl::enable_peer_access(int dev0, int dev1) {
524 525
    static bool already_enabled[StaticData::MAX_NR_DEVICE]
                               [StaticData::MAX_NR_DEVICE];
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    if (already_enabled[dev0][dev1])
        return;

    static std::mutex global_lock;
    MGB_LOCK_GUARD(global_lock);
    if (already_enabled[dev0][dev1])
        return;

    int can;
    MGB_CUDA_CHECK(cudaDeviceCanAccessPeer(&can, dev0, dev1));
    if (can) {
        mgb_log("enable peer access from GPU %d to GPU %d", dev0, dev1);
        MGB_CUDA_CHECK(cudaSetDevice(dev0));
        auto err = cudaDeviceEnablePeerAccess(dev1, 0);
        if (err != cudaSuccess) {
            mgb_log_error("failed to enable peer access from %d to %d: %s(%d)",
542 543
                          dev0, dev1, cudaGetErrorString(err),
                          static_cast<int>(err));
544 545 546 547 548 549 550 551 552 553 554 555
            cudaGetLastError();
        }
    }

    // check for cudaMemcpyPeer usable
    int v0 = 1, v1 = 2;

    int *dp0, *dp1;
    MGB_CUDA_CHECK(cudaSetDevice(dev0));
    MGB_CUDA_CHECK(cudaMalloc(&dp0, sizeof(int)));
    MGB_CUDA_CHECK(cudaSetDevice(dev1));
    MGB_CUDA_CHECK(cudaMalloc(&dp1, sizeof(int)));
556 557
    MGB_CUDA_CHECK(cudaMemcpy(dp0, &v0, sizeof(int), cudaMemcpyHostToDevice));
    MGB_CUDA_CHECK(cudaMemcpy(dp1, &v1, sizeof(int), cudaMemcpyHostToDevice));
558 559
    MGB_CUDA_CHECK(cudaMemcpyPeer(dp1, dev1, dp0, dev0, sizeof(int)));
    int get = 0;
560
    MGB_CUDA_CHECK(cudaMemcpy(&get, dp1, sizeof(int), cudaMemcpyDeviceToHost));
561 562

    mgb_throw_if(get != 1, CudaError,
563 564 565
                 "P2P copy (%d => %d) check failed; consider disabling "
                 "Access Control Services(ACS) for the PCI device",
                 dev0, dev1);
566 567 568 569 570 571

    already_enabled[dev0][dev1] = true;
}

/* ===================== CudaCompNodeImpl::DeviceInfo  ===================== */

572
void CudaCompNodeImpl::DeviceInfo::init(const CompNodeEnv& env) {
573 574 575 576 577
    mgb_assert(!mem_alloc);
#if 0
    // forward cudaMalloc
    mem_alloc = mem_alloc::DevMemAlloc::make_cuda_alloc();
#else
578
    auto&& cuenv = env.cuda_env();
579 580 581 582 583 584 585 586 587 588
    cuenv.activate();
    dev_num = cuenv.device;
    auto reserve_size = StaticData::get_mem_reserve_size();
    mem_alloc = mem_alloc::DevMemAlloc::make(
            dev_num, reserve_size,
            std::make_shared<mem_alloc::CudaRawAllocator>(),
            std::make_shared<mem_alloc::CudaDeviceRuntimePolicy>());
    mem_alloc->prealloc_config(sd->prealloc_config);
    auto align = env.property().mem_alignment;
    mem_alloc->alignment(align);
589 590 591 592
    mgb_log_debug(
            "cuda: gpu%d: name=`%s' dyn_mem_reserve=%.2fMiB alignment=0x%zx",
            dev_num, cuenv.device_prop.name, reserve_size / 1024.0 / 1024,
            align);
593 594 595 596 597 598 599 600 601 602 603
#endif
}

bool CudaCompNodeImpl::check_global_finalized() {
    if (!sd) {
        static std::atomic_flag warn_printed = ATOMIC_FLAG_INIT;
        if (!warn_printed.test_and_set()) {
            mgb_log_debug("cuda comp node method called after global finalize");
        }
        return true;
    }
604 605 606 607 608 609 610 611 612 613 614 615
#if MGB_CUDA && defined(WIN32)
    //! FIXME: windows cuda driver shutdown before call atexit function even
    //! register atexit function after init cuda driver! as a workround
    //! recovery resource by OS temporarily, may need remove this after
    //! upgrade cuda runtime
    if (CudaCompNode::is_into_atexit) {
        mgb_log_debug(
                "windows cudaErrorCudartUnloading happened!!, resource "
                "recovery by OS!!");
        return true;
    }
#endif
616 617 618 619 620
    return false;
}

/* ===================== EventImpl  ===================== */

621
class CudaCompNode::EventImpl final : public EventImplHelper {
622
    bool m_init_finished = false;
623
    CudaCompNodeImpl* const m_comp_node_impl;
624 625 626 627
    cudaEvent_t m_cuda_event;

    void do_record() override {
        m_comp_node_impl->activate();
628
        auto&& env = m_comp_node_impl->m_env.cuda_env();
629 630 631 632 633 634 635 636 637 638
        MGB_CUDA_CHECK(cudaEventRecord(m_cuda_event, env.stream));
    }

    bool do_finished() override {
        m_comp_node_impl->activate();
        cudaError_t err = cudaEventQuery(m_cuda_event);
        if (err == cudaSuccess)
            return true;
        if (err == cudaErrorNotReady)
            return false;
639 640
        mgb_throw(CudaError, "failed to query event: %d: %s", int(err),
                  cudaGetErrorString(err));
641 642 643 644 645 646
    }

    void host_wait_cv() override {
        MGB_CUDA_CHECK(cudaEventSynchronize(m_cuda_event));
    }

647
    double do_elapsed_time_until(EventImplHelper& end) override {
648 649
        m_comp_node_impl->activate();
        float ret = 0.0;
650 651
        MGB_CUDA_CHECK(cudaEventElapsedTime(
                &ret, m_cuda_event, static_cast<EventImpl&>(end).m_cuda_event));
652 653 654
        return static_cast<double>(ret) * 1e-3;
    }

655
    void do_device_wait_by(Impl* cn_impl) override;
656

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
public:
    EventImpl(CudaCompNodeImpl* comp_node_impl, size_t create_flags)
            : EventImplHelper(comp_node_impl, create_flags),
              m_comp_node_impl{comp_node_impl} {
        m_comp_node_impl->activate();
        size_t cuda_flags = cudaEventDisableTiming;
        if (create_flags & NEED_TIMER)
            cuda_flags = 0;
        MGB_CUDA_CHECK(cudaEventCreateWithFlags(&m_cuda_event, cuda_flags));
        m_init_finished = true;
    }

    ~EventImpl() {
        if (m_init_finished) {
            MGB_TRY { MGB_CUDA_CHECK(cudaEventDestroy(m_cuda_event)); }
            MGB_CATCH(MegBrainError & exc, {
                mgb_log_error("failed to destroy cuda event: %s", exc.what());
            })
675
        }
676
    }
677 678
};

679
std::unique_ptr<CompNode::Event> CudaCompNodeImpl::create_event(size_t flags) {
680 681 682
    return std::make_unique<EventImpl>(this, flags);
}

683
void CudaCompNode::EventImpl::do_device_wait_by(Impl* cn_impl) {
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
    if (cn_impl->dyn_typeinfo() == CudaCompNodeImpl::typeinfo()) {
        auto imp = static_cast<CudaCompNodeImpl*>(cn_impl);
        auto stream = imp->m_env.cuda_env().stream;
        imp->activate();
        MGB_CUDA_CHECK(cudaStreamWaitEvent(stream, m_cuda_event, 0));
        return;
    }
    if (cn_impl->env().property().type == DeviceType::CPU) {
        auto waiter = [this]() {
            MGB_CUDA_CHECK(cudaEventSynchronize(m_cuda_event));
        };
        cn_impl->add_callback(std::move(waiter));
        return;
    }
    mgb_throw(MegBrainError, "unimplemented event device_wait_by config");
}

/* ===================== CudaCompNode static methods ===================== */

bool CudaCompNode::available() {
    static int result = -1;
    static Spinlock mtx;
    MGB_LOCK_GUARD(mtx);
    if (result == -1) {
        int ndev = -1;
        auto err = cudaGetDeviceCount(&ndev);
        result = err == cudaSuccess && ndev > 0;
        if (!result) {
            mgb_log_warn("cuda unavailable: %s(%d) ndev=%d",
713 714 715 716
                         cudaGetErrorString(err), static_cast<int>(err), ndev);
        }
        if (err == cudaErrorInitializationError) {
            mgb_throw(std::runtime_error, "cuda initialization error.");
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
        }
    }
    return result;
}

void CudaCompNode::finalize() {
    if (CudaCompNodeImpl::sd) {
        sync_all();

        auto ptr = CudaCompNodeImpl::sd;
        CudaCompNodeImpl::sd = nullptr;
        ptr->~StaticData();
    }
}

732 733 734 735 736 737 738 739 740
#if MGB_CUDA && defined(WIN32)
//! FIXME: windows cuda driver shutdown before call atexit function even
//! register atexit function after init cuda driver! as a workround
//! recovery resource by OS temporarily, may need remove this after
//! upgrade cuda runtime
bool CudaCompNode::is_into_atexit = false;
#endif
CompNode::Impl* CudaCompNode::load_cuda(const Locator& locator,
                                        const Locator& locator_logical) {
741
    int nr_gpu = get_device_count();
742 743 744 745 746 747 748 749 750 751
#if MGB_CUDA && defined(WIN32)
    //! FIXME: windows cuda driver shutdown before call atexit function even
    //! register atexit function after init cuda driver! as a workround
    //! recovery resource by OS temporarily, may need remove this after
    //! upgrade cuda runtime
    if (!is_into_atexit) {
        auto err = atexit([] { is_into_atexit = true; });
        mgb_assert(!err, "failed to register atexit function");
    }
#endif
752
    mgb_assert(locator.device >= 0 && locator.device < nr_gpu,
753 754
               "request gpu%d out of valid range [0, %d)", locator.device,
               nr_gpu);
755

756
    auto&& sdptr = CudaCompNodeImpl::sd;
757 758 759 760 761 762 763
    {
        MGB_LOCK_GUARD(CudaCompNodeImpl::sd_mtx);
        if (!sdptr) {
            // use static storage so object can be safely accessed even after
            // global finalize
            using T = CudaCompNodeImpl::StaticData;
            static std::aligned_storage_t<sizeof(T), alignof(T)> storage;
764
            sdptr = new (&storage) T;
765 766
        }
    }
767
    auto&& sd = *sdptr;
768 769
    MGB_LOCK_GUARD(sd.mtx);

770 771 772
    CompNodeImpl* available_node = nullptr;
    for (int i = 0; i < sd.nr_node; ++i) {
        auto&& cur = sd.node[i];
773
        if (cur.m_initialized) {
774 775
            if (cur.m_locator == locator &&
                cur.m_locator_logical == locator_logical) {
776 777 778 779 780 781 782 783 784
                return &cur;
            }
        } else {
            available_node = &cur;
        }
    }

    if (!available_node) {
        mgb_assert(sd.nr_node < sd.MAX_NR_COMP_NODE,
785 786
                   "too many CompNode allocated");
        available_node = &sd.node[sd.nr_node++];
787
    }
788
    mgb_assert(locator.device < sd.MAX_NR_DEVICE, "device number too large");
789 790 791 792 793 794 795 796 797 798 799 800 801 802

    mgb_assert(!available_node->m_initialized);
    available_node->init(locator, locator_logical);

    return available_node;
}

void CudaCompNode::try_coalesce_all_free_memory() {
    // TODO: optimized implementation
    auto sd = CudaCompNodeImpl::sd;
    if (!sd)
        return;

    size_t size = 0;
803 804 805
    for (int i = 0; i < sd->nr_dev_used; ++i) {
        size += sd->dev_info[i]
                        .mem_alloc->gather_stream_free_blk_and_release_full();
806 807 808
    }
    if (size) {
        mgb_log_debug("%zu bytes freed by try_coalesce_all_free_memory()",
809
                      size);
810 811 812 813 814 815 816 817
    }
}

void CudaCompNode::sync_all() {
    auto sd = CudaCompNodeImpl::sd;
    if (!sd)
        return;

818
    for (int i = 0;; ++i) {
819
        // ensure async init finished
820
        CompNodeEnv* env;
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
        {
            MGB_LOCK_GUARD(sd->mtx);
            if (i >= sd->nr_node) {
                break;
            }
            env = &sd->node[i].env();
        }
        env->cuda_env();
    }

    MGB_LOCK_GUARD(sd->mtx);
    for (int i = 0; i < sd->nr_dev_used; ++i) {
        MGB_CUDA_CHECK(cudaSetDevice(sd->dev_info[i].dev_num));
        MGB_CUDA_CHECK(cudaDeviceSynchronize());
    }
}

838
void CudaCompNode::foreach (thin_function<void(CompNode)> callback) {
839 840 841 842
    auto sd = CudaCompNodeImpl::sd;
    if (!sd)
        return;

843
    for (int i = 0;; ++i) {
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
        CompNode cur;
        {
            MGB_LOCK_GUARD(sd->mtx);
            if (i >= sd->nr_node)
                return;
            cur = make_comp_node_from_impl(&sd->node[i]);
        }
        callback(cur);
    }
}

size_t CudaCompNode::get_device_count(bool warn) {
    static int cnt = -1;
    static Spinlock mtx;
    MGB_LOCK_GUARD(mtx);
    if (cnt == -1) {
        auto err = cudaGetDeviceCount(&cnt);
        if (err != cudaSuccess) {
862 863 864
            if (warn)
                mgb_log_error("cudaGetDeviceCount failed: %s (err %d)",
                              cudaGetErrorString(err), int(err));
865 866 867 868 869 870 871
            cnt = 0;
        }
        mgb_assert(cnt >= 0);
    }
    return cnt;
}

872
void CudaCompNode::set_prealloc_config(size_t alignment, size_t min_req,
873 874
                                       size_t max_overhead,
                                       double growth_factor) {
875
    auto&& sdptr = CudaCompNodeImpl::sd;
876 877 878 879 880
    {
        MGB_LOCK_GUARD(CudaCompNodeImpl::sd_mtx);
        if (!sdptr) {
            using T = CudaCompNodeImpl::StaticData;
            static std::aligned_storage_t<sizeof(T), alignof(T)> storage;
881
            sdptr = new (&storage) T;
882 883 884 885 886 887
            sdptr->prealloc_config.alignment = alignment;
            sdptr->prealloc_config.min_req = min_req;
            sdptr->prealloc_config.growth_factor = growth_factor;
            sdptr->prealloc_config.max_overhead = max_overhead;
        } else {
            mgb_log_warn(
888 889 890 891
                    "invalid call to set_prealloc_config, will fallback to "
                    "default config; "
                    "prealloc_config should be specified before any CUDA "
                    "memory allocation");
892 893 894 895
        }
    }
}

896 897 898 899 900
#else

bool CudaCompNode::available() {
    return false;
}
901 902 903
void CudaCompNode::try_coalesce_all_free_memory() {}
void CudaCompNode::foreach (thin_function<void(CompNode)>) {}
void CudaCompNode::finalize() {}
904 905 906 907 908 909
size_t CudaCompNode::get_device_count(bool warn) {
    return 0;
}
CudaCompNode::Impl* CudaCompNode::load_cuda(const Locator&, const Locator&) {
    mgb_throw(MegBrainError, "cuda disabled at compile time");
}
910
void CudaCompNode::sync_all() {}
911

912
void CudaCompNode::set_prealloc_config(size_t alignment, size_t min_req,
913 914 915
                                       size_t max_overhead,
                                       double growth_factor) {}

916 917
#undef err

918
#endif  // MGB_CUDA
919 920

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}