proxy_graph.cpp 30.5 KB
Newer Older
1
/**
M
Megvii Engine Team 已提交
2 3
 * \file imperative/src/impl/proxy_graph.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
4
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6
 *
M
Megvii Engine Team 已提交
7 8 9
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
10 11 12 13 14 15 16
 */

#include "./blob_manager_impl.h"
#include "./proxy_graph.h"
#include "megbrain/graph/static_infer.h"
#include "megbrain/graph/operator_node.h"
#include "megbrain/opr/io.h"
17
#include "megbrain/opr/tensor_manip.h"
18 19 20 21
#include "megbrain/opr/utility.h"
#include "megbrain/imperative/ops/opr_attr.h"
#include "megbrain/imperative/ops/backward_graph.h"

22 23 24 25
#if __cplusplus >= 201703L
#include <optional>
#endif

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
namespace mgb {
namespace imperative {

using cg::OperatorNodeBase;

template<bool p, typename T, typename F>
constexpr auto&& select(T&& t, F&& f) {
    if constexpr (p) {
        return std::forward<T>(t);
    } else {
        return std::forward<F>(f);
    }
}

MGB_DEFINE_OPR_CLASS(
        ProxyGraph::InputPlaceholder,
        cg::OperatorNodeBase) // {

    void on_output_comp_node_stream_changed() override {
        mgb_assert(0);
    }
    // TODO: consider implement following initialization method,
    // so InputPlaceholder can be initialized correctly during
    // operator insertion
    void init_output_comp_node() override {
    }
    void init_output_format() override {
    }
    void init_output_dtype() override {
    }
    void init_output_static_infer_desc() override {
    }
    void init_output_mem_plan(bool dynamic) override {
        MGB_MARK_USED_VAR(dynamic);
        mgb_assert(0);
    }
    void do_execute(ExecEnv &env) override {
        mgb_assert(0);
    }

public:
    Tensor* m_tensor;

    InputPlaceholder(ComputingGraph& graph, Tensor* tensor = nullptr,
                     const DeviceTensorND& static_infer_value = {})
            : Super(&graph, {}, "device_value", {}), m_tensor(tensor),
              m_static_infer_value(static_infer_value) {
        mgb_assert(m_static_infer_value.empty() ||
                   m_static_infer_value.comp_node() == CompNode::default_cpu());
        add_output(None)->add_flag(VarNode::Flag::NO_SYS_MEM_ALLOC);
        // never dedup
        add_equivalence_component<ScalarHash<void*>>(this);
    }

    static SymbolVar make(ComputingGraph& graph, Tensor& tensor) {
        auto opr = graph.insert_opr(
            std::make_unique<InputPlaceholder>(graph, &tensor));
        auto var = opr->output(0);
        auto&& dev_tensor = tensor.dev_tensor();
        var->m_comp_node = dev_tensor.comp_node();
        var->m_shape = dev_tensor.shape();
87 88 89 90 91
        if (dev_tensor.empty()) {
            auto layout = dev_tensor.layout();
            layout.init_contiguous_stride();
            dev_tensor.reset(dev_tensor.storage(), layout);
        }
92
        var->m_dev_tensor = dev_tensor;
93 94
        var->m_mem_plan.reset_from_owner_var().chunk()
                .mem_alloc_status.set_from_owner_var();
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
        return var;
    }

    static SymbolVar make(ComputingGraph& graph, const LogicalTensorDesc& desc) {
        auto opr = graph.insert_opr(
            std::make_unique<InputPlaceholder>(graph, nullptr, desc.value));
        auto var = opr->output(0);
        var->m_comp_node = desc.comp_node;
        var->m_shape = desc.layout;
        var->m_dev_tensor.reset({}, TensorLayout(desc.layout.dtype));
        return var;
    }

    const DeviceTensorND* get_static_infer_value(bool may_sync) {
        if (!m_static_infer_value.empty()) {
            return &m_static_infer_value;
        }
        if (m_tensor && (may_sync || m_tensor->try_get_value())) {
            auto&& hv = m_tensor->get_value();
            mgb_assert(!hv.empty());
            m_static_infer_value = hv.proxy_to_default_cpu();
            // steal ownership from shared_ptr
            using SP = std::shared_ptr<dt_byte>;
            auto& sp = const_cast<SP&>(m_static_infer_value.storage().raw_storage());
            static auto dummy = std::make_shared<dt_byte>();
            sp = SP(dummy, sp.get());
            return &m_static_infer_value;
        }
        return nullptr;
    }

private:
    DeviceTensorND m_static_infer_value;
};
MGB_DYN_TYPE_OBJ_FINAL_IMPL(
        ProxyGraph::InputPlaceholder);

class ProxyGraph::ExecEnv final : public cg::GraphExecutable::ExecEnv {

public:
    void dispatch_on_comp_node(CompNode, Task&& task) override {
        task();
    }

    void dispatch_on_comp_node_with_mask(CompNode, Task&& task,
                                         cg::ExecutionMask* mask) override {
        mgb_throw_if(mask, GraphError,
                     "ExecutionMask not supported in imperative mode");
        task();
    }

    void pause_exec() override {}

    void resume_exec() override {}
};

class ProxyGraph::StaticInferManager : public cg::static_infer::StaticInferManager {
public:
    using Tag = cg::static_infer::Tag;
    using ShapeInferDesc = cg::static_infer::ShapeInferDesc;
    using ValueInferDesc = cg::static_infer::ValueInferDesc;
    using InferType = cg::static_infer::InferType;
    using DepVal = cg::static_infer::DepVal;
    using DepElement = cg::static_infer::DepElement;
    using DepType = cg::static_infer::DepType;
    using InpElement = cg::static_infer::InpElement;

    struct Result {
        TensorShape shape;
        DeviceTensorND value;
    };

    ProxyGraph* owner;
    cg::OperatorNodeBase* cur_opr = nullptr;
    std::vector<std::optional<ShapeInferDesc>> shape_descs;
    std::vector<std::optional<ValueInferDesc>> value_descs;
    std::vector<Result> inferred_outputs;

    StaticInferManager(ProxyGraph* owner_) : owner(owner_) {}

    size_t locate_output(VarNode* var) {
        mgb_assert(cur_opr);
        auto&& output_vars = cur_opr->output();
        mgb_assert(shape_descs.size() == output_vars.size());
        auto&& it = std::find(output_vars.begin(), output_vars.end(), var);
        mgb_assert(it != output_vars.end());
        return it - output_vars.begin();
    }

    void register_shape_infer(Tag dest, const ShapeInferDesc &desc) override {
        auto i = locate_output(dest);
        mgb_assert(!shape_descs[i]);
        shape_descs[i].emplace(desc);
    }

    void register_value_infer(Tag dest, const ValueInferDesc &desc) override {
        auto i = locate_output(dest);
        mgb_assert(!value_descs[i]);
        value_descs[i].emplace(desc);
    }

    InferType get_infer_type(Tag var) override {
        // may be called during get_proxy_opr or make_backward_graph

        // don't let opr apply any immediate optimization
        return {InferType::MISSING_INP, InferType::MISSING_INP};

        if (auto opr = var->owner_opr()->try_cast_final<InputPlaceholder>()) {
            return {var->shape().ndim ? InferType::CONST : InferType::MISSING_INP,
                    opr->m_tensor ? InferType::CONST : InferType::MISSING_INP};
        }
        if (cur_opr) {
            auto&& outputs = cur_opr->output();
            auto&& it = std::find(outputs.begin(), outputs.end(), var);
            if (it != outputs.end()) {
                return {infer_shape_fallible(var) ? InferType::CONST : InferType::MISSING_INP,
                        // value inference could be expensive
                        InferType::MISSING_INP};
            }
        }
        return {InferType::MISSING_INP, InferType::MISSING_INP};
    }

    void update() {
        if (cur_opr != owner->m_cur_opr) {
            clear();
            cur_opr = owner->m_cur_opr;
            if (cur_opr) {
                auto nout = cur_opr->output().size();
                shape_descs.resize(nout);
                value_descs.resize(nout);
                inferred_outputs.resize(nout);
                cur_opr->init_output_static_infer_desc();
            }
        }
    }

    void clear() {
        cur_opr = nullptr;
        shape_descs.clear();
        value_descs.clear();
        inferred_outputs.clear();
    }

    template<bool is_shape>
    auto do_infer(Tag dest, bool may_sync)
            -> const std::conditional_t<is_shape, TensorShape, DeviceTensorND>* {
        // Some infer_func does not use InpVal passed to them, but
        // call infer_* on their inputs instead, so dest could be an input.
        // It is also possible that an opr call infer_* on its inputs before it
        // is inserted
        if (auto opr = dest->owner_opr()->try_cast_final<InputPlaceholder>()) {
            if constexpr (is_shape) {
                auto* shp = &dest->shape();
                return shp->ndim ? shp : nullptr;
            } else {
                return opr->get_static_infer_value(may_sync);
            }
        }

        mgb_assert(cur_opr);
        mgb_assert(cur_opr->output().size() == shape_descs.size());

        // dest must be an output now
        auto i = locate_output(dest);
        auto& result = inferred_outputs[i];
        auto& desc = select<is_shape>(shape_descs[i], value_descs[i]);

        // return if no need to call infer_func
        if constexpr (is_shape) {
            if (result.shape.ndim != 0) {
                return &result.shape;
            }
        } else {
            if (!result.value.empty()) {
                return &result.value;
            }
        }
        if (!desc) {
            return nullptr;
        }

        // fill args for infer_func
        cg::static_infer::InpVal args{1};
        args.val.reserve(desc->deps.size());
        auto push_shape = [&args](const TensorShape* shape) {
            args.val.emplace_back();
            args.val.back().m_shape = shape;
        };
        auto push_value = [&args](const DeviceTensorND* value) {
            args.val.emplace_back();
            args.val.back().m_value = value;
        };

        for (auto&& dep : desc->deps) {
            if (auto opr = dep.dest->owner_opr()->template try_cast_final<InputPlaceholder>()) {
                if (dep.type == DepType::SHAPE) {
                    if (dep.dest->shape().ndim) {
                        push_shape(&dep.dest->shape());
                    } else {
                        return nullptr;
                    }
                } else {
                    if (auto* p = opr->get_static_infer_value(may_sync)) {
                        push_value(p);
                    } else {
                        return nullptr;
                    }
                }
                continue;
            }

            // dep must be an output
            if (dep.type == DepType::SHAPE) {
                if (auto* p = do_infer<true>(dep.dest, may_sync)) {
                    push_shape(p);
                } else {
                    return nullptr;
                }
            } else {
                if (auto* p = do_infer<false>(dep.dest, may_sync)) {
                    push_value(p);
                } else {
                    return nullptr;
                }
            }
        }

        // call infer_func
        if constexpr (is_shape) {
            if (!desc->infer_func(result.shape, args)) {
                mgb_log_warn("something is missing for shape inference of %s",
                             cur_opr->dyn_typeinfo()->name);
                return nullptr;
            }
            return &result.shape;
        } else {
            if (!desc->infer_func(result.value, args)) {
                mgb_log_warn("something is missing for value inference of %s",
                             cur_opr->dyn_typeinfo()->name);
                return nullptr;
            }
            return &result.value;
        }
    }

    const TensorShape& infer_shape(Tag var) override {
        auto* p = do_infer<true>(var, true);
        mgb_assert(p, "failed to infer shape for %s", var->name().c_str());
        return *p;
    }
    const TensorShape* infer_shape_fallible(Tag var) override {
        return do_infer<true>(var, false);
    }
    const DeviceTensorND& infer_value(Tag var) override {
        auto* p = do_infer<false>(var, true);
        mgb_assert(p, "failed to infer value for %s", var->name().c_str());
        return *p;
    }
    const DeviceTensorND* infer_value_fallible(Tag var) override {
        return do_infer<false>(var, false);
    }

    DepVal get_rt_static_source_deps(const DepElement&) override {mgb_assert(0);}
};

class ProxyGraph::SeqCompNodeOptimizer : public cg::SeqCompNodeOptimizer {
    void register_stream_var(VarNode*, StreamPropType) override {}
    void register_propagate_function(VarNode*, PropFunction) override {}
    StreamPropType stream_prop_type(VarNode*) override {mgb_assert(0);}
};

class ProxyGraph::ProxyGraphImpl : public cg::ComputingGraph {
    static std::atomic<size_t> m_node_id;
    ProxyGraph* m_owner;
    MemPool<VarNode> m_var_node_pool;
    std::vector<std::unique_ptr<OperatorNodeBase>> m_opr_refkeeper;
372
    std::mutex m_opr_refkeeper_mtx;
373 374 375 376 377 378 379 380 381 382 383 384 385 386
    CompNode::UnorderedSet m_used_comp_node;
    VarReceiverInfo m_var_receiver_info;
public:
    ~ProxyGraphImpl() {
        mgb_assert(!m_owner->m_cur_opr);
        if (is_finalized()) return;
        for (auto&& i : m_used_comp_node) {
            if (i.device_type() == CompNode::DeviceType::CUDA) continue;
            i.sync();
        }
    }

    ProxyGraphImpl(ProxyGraph* owner) : m_owner(owner) {
        options().imperative_proxy_graph = true;
387
        options().no_force_inplace = true;
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
        options().log_level = 0;
        m_var_receiver_info.dev_value = 1;
        m_var_receiver_info.allow_empty_value = 1;
    }

    static std::unique_ptr<ProxyGraphImpl> make(ProxyGraph* owner) {
        return std::make_unique<ProxyGraphImpl>(owner);
    }

    void add_used_comp_node(CompNode cn) {
        m_used_comp_node.insert(cn);
    }

    bool invalid() const {
        return is_finalized() || nr_oprs_in_graph() > m_owner->m_max_op_cnt;
    }

    size_t next_node_id() override {
        return m_node_id.fetch_add(1);
    }

    void* alloc_varnode_storage() override {
        return m_var_node_pool.alloc_raw();
    }

    void free_varnode_storage(void* ptr) override {
        m_var_node_pool.free_raw(ptr);
    }

    OperatorNodeBase* insert_opr(std::unique_ptr<OperatorNodeBase> opr_uniqp) override {
        mgb_assert(!is_finalized());
        auto opr = opr_uniqp.get();

        if (!opr->inserted_in_graph()) {
            m_opr_refkeeper.emplace_back(std::move(opr_uniqp));
            opr->set_inserted_in_graph();
            opr->init_output_comp_node();
            opr->init_output_dtype();
            opr->init_output_format();
        }
        return opr;
    }

    cg::static_infer::StaticInferManager& static_infer_manager() override {
        return *m_owner->m_static_infer_manager;
    }

    cg::SeqCompNodeOptimizer& seq_comp_node_optimizer() override {
        return *m_owner->m_seq_comp_node_optimizer;
    }

    std::shared_ptr<void> on_comp_node_finalize() override {
440
        MGB_LOCK_GUARD(m_opr_refkeeper_mtx);
441 442 443 444 445 446 447 448 449 450 451 452 453
        mgb_assert(!m_owner->m_cur_opr);
        // finalize would do sync first
        m_opr_refkeeper.clear();
        return {};
    }

    const VarReceiverInfo& var_receiver_in_current_comp_seq(
            const VarNode *var) const override {
        return m_var_receiver_info;
    }

    size_t nr_oprs_in_graph() const override {return m_opr_refkeeper.size();}

454 455 456 457 458 459
    void record_async_error(std::unique_ptr<MegBrainError> async_exc) override {
        if (!ProxyGraph::tm_async_error) {
            std::swap(async_exc, tm_async_error);
        }
    }

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    std::unique_ptr<cg::AsyncExecutable> compile(const OutputSpec &out_spec) override {mgb_assert(0);}
    SmallVector<std::unique_ptr<cg::AsyncExecutable>> compile_multi_part(
            const SmallVector<OutputSpec>& out_specs) override {mgb_assert(0);}
    cg::AsyncExecutable* current_comp_seq() override {mgb_assert(0);}
    std::string get_mem_allocation_info() const override {mgb_assert(0);}
    VarNode* find_var_by_id(size_t id) const override {mgb_assert(0);}
    void share_device_memory_with(ComputingGraph &other) override {mgb_assert(0);}
    void set_device_memory_allocator(
            std::shared_ptr<cg::DeviceMemoryAllocator> allocator) override {mgb_assert(0);}
    size_t get_device_memory_size(CompNode cn) override {mgb_assert(0);}
    size_t clear_device_memory() override {mgb_assert(0);}
    void set_as_subgraph(ComputingGraph &par_graph) override {mgb_assert(0);}
};

std::atomic<size_t> ProxyGraph::ProxyGraphImpl::m_node_id = 0;

ProxyGraph::ProxyGraph() :
        m_graph(ProxyGraphImpl::make(this)),
        m_env{new ExecEnv},
        m_static_infer_manager(new StaticInferManager(this)),
        m_seq_comp_node_optimizer(new SeqCompNodeOptimizer()) {
}

void ProxyGraph::reset() {
    mgb_assert(!m_cur_opr);
    m_graph = ProxyGraphImpl::make(this);
}

ProxyGraph* ProxyGraph::get_default_graph() {
    static thread_local ProxyGraph inst;
    if (inst.m_graph->invalid()) {
        inst.reset();
    }
    return &inst;
}

class ProxyGraph::CurOprGuard {
public:
    CurOprGuard(ProxyGraph* owner, OperatorNodeBase* opr) : m_owner(owner) {
        mgb_assert(!owner->m_cur_opr);
        owner->m_cur_opr = opr;
    }
    CurOprGuard(const CurOprGuard&) = delete;
    ~CurOprGuard() {
        m_owner->cleanup();
    }
private:
    ProxyGraph* m_owner;
};

#define CUR_OPR_GUARD(opr) CurOprGuard MGB_TOKENPASTE2(__cur_opr_guard_, __LINE__)(this, opr)

/*********************** Physical Tensor Impl ***********************/

SmallVector<LogicalTensorDesc> ProxyGraph::infer_output_attrs(
        const OpDef& opdef,
        const SmallVector<Tensor*>& inputs) {
    SmallVector<LogicalTensorDesc> ret;
    CUR_OPR_GUARD(get_proxy_opr(opdef, inputs));
    do_shape_infer(true);
    for (auto&& i: m_cur_opr->usable_output()) {
        mgb_assert(i->dtype().valid() && i->comp_node().valid());
        mgb_assert(i->shape().ndim || i->contain_flag(VarNode::Flag::NO_SYS_MEM_ALLOC));
        ret.push_back({{i->shape(), i->dtype()}, i->comp_node()});
    }
    return ret;
}

void ProxyGraph::invoke_op(const OpDef& opdef,
        const SmallVector<Tensor*>& inputs,
530 531
        const SmallVector<Tensor*>& outputs,
        const SmallVector<Tensor*>& workspaces) {
532
    CUR_OPR_GUARD(get_proxy_opr(opdef, inputs));
533
    init_output_tensor(outputs, workspaces);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
    for (auto oup : m_cur_opr->output()) {
        m_graph->add_used_comp_node(oup->comp_node());
    }
    m_cur_opr->execute(*m_env);
}

void ProxyGraph::cleanup() {
    if (m_cur_opr) {
        for (auto&& i : m_cur_opr->input()) {
            i->m_dev_tensor.storage({});
        }
        for (auto&& i : m_cur_opr->output()) {
            i->m_dev_tensor.storage({});
        }
        m_static_infer_manager->clear();
    }
    m_cur_opr = nullptr;
}

553
void ProxyGraph::init_output_tensor(const SmallVector<Tensor*>& outputs, const SmallVector<Tensor*>& workspaces) {
554 555 556 557 558 559
    // get proxy opr
    auto proxy = m_cur_opr;

    do_shape_infer(true);

    size_t j = 0;
560
    size_t k = 0;
561 562 563
    for (auto&& var : proxy->output()) {
        auto &&chk = var->m_mem_plan.reset_from_owner_var().chunk();
        if (var->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) {
564 565 566 567 568 569 570 571 572 573 574 575 576
            // workspace
            if (workspaces.size()) {
                mgb_assert(k < workspaces.size());
                auto && layout = workspaces[k]->layout();
                mgb_assert(var->comp_node() == workspaces[k]->comp_node() &&
                            var->shape().eq_shape(layout) &&
                            var->dtype() == layout.dtype);
                var->m_dev_tensor = workspaces[k]->dev_tensor();
                ++ k;
            } else {
                TensorLayout layout{var->shape(), var->dtype(), var->format()};
                var->m_dev_tensor = BlobManager::inst()->alloc_workspace_with_defrag(var->comp_node(), layout);
            }
577 578 579 580 581 582 583
        } else {
            mgb_assert(j < outputs.size());
            auto &&tensor = outputs[j];
            auto &&layout = tensor->layout();
            mgb_assert(var->comp_node() == tensor->comp_node() &&
                        var->shape().eq_shape(layout) &&
                        var->dtype() == layout.dtype);
584
            var->assign_dev_tensor_from_tensor(tensor->dev_tensor());
585 586 587 588 589
            ++ j;
        }
        chk.mem_alloc_status.set_from_owner_var();
    }
    mgb_assert(j == outputs.size());
590
    mgb_assert(k == workspaces.size());
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

    // Memory forwarding was bypassed in megbrain with graph option
    // imerative_proxy_graph on, here we call mem_plan_fwd_in2out_readonly
    // to initialize some opr(e.g. Subtensor)'s internal state
    // TODO: implement memory forwarding
    proxy->mem_plan_fwd_in2out_readonly();
    {
        // some opr (e.g. Reduce) rely on on_mem_status_changed to set
        // input/output tensor corretly, since we bypass var_node_mem_mgr
        // on_mem_status_changed should be called here
        auto&& cb = proxy->get_opr_event_callback().on_mem_status_changed;
        if (cb.valid()) {
            cb.val()();
        }
    }
}

cg::OperatorNodeBase* ProxyGraph::get_proxy_opr(
        const OpDef& opdef,
        const SmallVector<Tensor*>& inputs) {
    VarNodeArray vinputs(inputs.size());
    for (size_t i = 0; i < inputs.size(); ++ i) {
        vinputs[i] = InputPlaceholder::make(*m_graph, *inputs[i]).node();
    }
615
    auto opr = OpDef::apply_on_var_node(opdef, vinputs)[0]->owner_opr();
616
    mgb_assert(!opr->same_type<InputPlaceholder>());
617
    for (auto &&i : opr->input()) {
618
        mgb_assert(i->owner_opr()->same_type<InputPlaceholder>());
619 620 621 622 623 624 625 626 627 628 629
    }
    return opr;
}

/*********************** Logical Tensor Impl ***********************/

size_t ProxyGraph::get_opr_output_size(const OpDef& opdef,
        const SmallVector<LogicalTensorDesc>& inputs) {
    return get_proxy_opr(opdef, inputs)->usable_output().size();
}

630
std::tuple<SmallVector<LogicalTensorDesc>, bool> ProxyGraph::infer_output_attrs_fallible(
631 632 633 634
        const OpDef& opdef,
        const SmallVector<LogicalTensorDesc>& inputs) {
    auto opr = get_proxy_opr(opdef, inputs);
    CUR_OPR_GUARD(opr);
635 636
    SmallVector<LogicalTensorDesc> outputs;
    bool validated = do_shape_infer(false);
637
    for (auto&& i : opr->usable_output()) {
638
        outputs.push_back({{i->shape(), i->dtype()}, i->comp_node()});
639
    }
640 641
    bool need_check = opr->same_type<opr::Reshape>();
    return {outputs, validated && !need_check};
642 643
}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
std::tuple<SmallVector<MemoryDesc>, SmallVector<MemoryDesc>> ProxyGraph::infer_output_mem_desc(
        const OpDef& def,
        const SmallVector<Tensor*>& inputs_tensors,
        const SmallVector<MemoryDesc>& inputs_mems) {
    auto opr = get_proxy_opr(def, inputs_tensors);
    CUR_OPR_GUARD(opr);
    do_shape_infer(true);
    SmallVector<MemoryDesc> outputs;
    SmallVector<MemoryDesc> workspaces;
    size_t cur_id = 0;
    for (auto&& i : opr->output()) {
        if (i->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) {
            workspaces.push_back({{i->shape(), i->dtype(), i->format()}, 0, i->comp_node(), StorageIdentifier::make(++ cur_id)});
        } else {
            outputs.push_back({{i->shape(), i->dtype()}, 0, i->comp_node(), StorageIdentifier::make(++ cur_id)});
        }
    }
    return {outputs, workspaces};
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
struct ProxyGraph::GradGraph {
    cg::VarNodeArray inputs;
    cg::VarNodeArray outputs;
    cg::VarNodeArray output_grads;
    cg::VarNode* grad;
};

BackwardGraphResult
ProxyGraph::make_backward_graph(
        const OpDef& opdef,
        const SmallVector<LogicalTensorDesc>& input_descs,
        const SmallVector<bool>& input_requires_grad,
        const SmallVector<bool>& output_has_grad) {
    ThinHashMap<VarNode*, size_t> var2idx;
    auto push = [&var2idx, cnt=0](VarNode* var) mutable {
        auto&& ret = var2idx.emplace(var, cnt ++);
        mgb_assert(ret.second, "var %s has been already inserted", var->cname());
        return ret.first->second;
    };
    auto inputs = make_input_place_holders(input_descs);
684
    auto fwd = OpDef::apply_on_var_node(opdef, inputs)[0]->owner_opr();
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
    auto&& outputs = fwd->usable_output();
    SmallVector<LogicalTensorDesc> output_descs;
    for (auto&& i : outputs) {
        output_descs.push_back({TensorLayout{i->dtype()}, i->comp_node()});
    }
    auto output_grads = make_input_place_holders(output_descs);
    mgb_assert(output_grads.size() == output_has_grad.size());
    bool any_input_has_grad = false;
    for (size_t i = 0; i < output_grads.size(); ++ i) {
        if (!output_has_grad[i]) {
            output_grads[i] = nullptr;
        } else {
            any_input_has_grad = true;
        }
    }
    if (!any_input_has_grad) {
        return {};
    }
    auto* gfunc = cg::lookup_grad_func(fwd->dyn_typeinfo());

    BackwardGraphResult result;
706
    auto&& igraph = result.backward;
707 708 709 710 711 712 713 714 715 716 717

    size_t nr_backward_graph_inputs = 0;
    auto gen_expr = [this, &var2idx, &igraph, &push, &fwd,
            &nr_backward_graph_inputs](cg::OperatorNodeBase* op) {
        if (auto t = as_tensor(op)) {
            mgb_assert(op->output().size() == 1);
            igraph.constants.emplace_back(push(op->output(0)), std::move(t));
        } else if (op->same_type<InputPlaceholder>()) {
            ++ nr_backward_graph_inputs;
            push(op->output(0));
        } else {
718
            SmallVector<size_t> inputs, outputs;
719 720 721 722 723 724 725 726 727 728 729 730
            for (auto &&i : op->input()) {
                if (i->owner_opr() == fwd) {
                    if (var2idx.find(i) == var2idx.end()) {
                        ++ nr_backward_graph_inputs;
                        push(i);
                    }
                }
                inputs.push_back(var2idx.at(i));
            }
            for (auto &&i : op->usable_output()) {
                outputs.push_back(push(i));
            }
731
            igraph.exprs.push_back({OpDef::make_from_op_node(op), inputs, outputs});
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
        }
    };

    // set backward graph outputs
    cg::DepOprIter iter{gen_expr};
    iter.set_visited(fwd);
    result.input_has_grad.resize(inputs.size());

    VarNodeArray output_grads_with_unused_var;
    {
        auto iter = output_grads.begin();
        for (auto&& i : fwd->output()) {
            if (i->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) {
                // the var node with VOLATILE_CONTENT(e.g. workspace
                // or an empty var) would not be considered as a normal
                // output, so its grad is always NULL
                output_grads_with_unused_var.push_back(nullptr);
            } else {
                output_grads_with_unused_var.push_back(*iter);
                ++ iter;
            }
        }
        mgb_assert(iter == output_grads.end());
    }

    Maybe<VarNodeArray> grad_results;
    for (size_t i = 0; i < inputs.size(); ++ i) {
        VarNode* grad;
        if (grad_results.valid()) {
            grad = grad_results.val()[i];
        } else {
            auto res = (*gfunc)(fwd, i, output_grads_with_unused_var);
            if (res.from_single()) {
                grad = res.single();
            } else {
                grad_results.emplace(res.all(fwd));
                grad = grad_results.val()[i];
            }
        }
        if (grad && !grad->owner_opr()->same_type<opr::InvalidGrad>()
            && input_requires_grad[i]) {
            mgb_assert(!grad->owner_opr()->same_type<opr::InvalidGrad>(),
                       "gradient of operator %s w.r.t. input #%lu is "
                       "either not well defined or not implemented",
                       fwd->dyn_typeinfo()->name, i);
            iter.add(grad);
            igraph.outputs.push_back(var2idx.at(grad));
            result.input_has_grad[i] = true;
        } else {
            result.input_has_grad[i] = false;
        }
    }
    if (igraph.outputs.empty()) {
        return {};
    }

    // set backward graph inputs
    igraph.inputs.reserve(nr_backward_graph_inputs);
    result.save_for_backward.reserve(nr_backward_graph_inputs);
    auto write_inputs = [&igraph, &var2idx, &result](const VarNodeArray& vars) {
        for (auto&& i: vars) {
            auto&& iter = var2idx.find(i);
            if (iter != var2idx.end()) {
                igraph.inputs.push_back(iter->second);
                result.save_for_backward.push_back(true);
            } else {
                result.save_for_backward.push_back(false);
            }
        }
    };
    write_inputs(inputs);
    write_inputs(outputs);
    write_inputs(output_grads);
    mgb_assert(igraph.inputs.size() == nr_backward_graph_inputs);
    return result;
}

cg::OperatorNodeBase* ProxyGraph::get_proxy_opr(const OpDef& opdef,
        const SmallVector<LogicalTensorDesc>& inputs) {
    mgb_assert(!m_cur_opr);
    auto vinputs = make_input_place_holders(inputs);
813
    return OpDef::apply_on_var_node(opdef, vinputs)[0]->owner_opr();
814 815 816 817 818 819 820 821 822 823 824 825
}

VarNodeArray ProxyGraph::make_input_place_holders(const SmallVector<LogicalTensorDesc>& inputs) {
    VarNodeArray vinputs(inputs.size());
    for (size_t i = 0; i < inputs.size(); ++ i) {
        vinputs[i] = InputPlaceholder::make(*m_graph, inputs[i]).node();
    }
    return vinputs;
}

/*********************** Common Impl ***********************/

826
bool ProxyGraph::do_shape_infer(bool sync_value) {
827 828
    m_static_infer_manager->update();

829
    bool validated = true;
830 831 832 833
    for (auto* var : m_cur_opr->output()) {
        if (sync_value) {
            var->shape(m_static_infer_manager->infer_shape(var));
        } else if (auto* shape = m_static_infer_manager->infer_shape_fallible(var)) {
834 835 836
                var->shape(*shape);
        } else {
            validated = false;
837 838
        }
    }
839
    return validated;
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
}

TensorPtr ProxyGraph::as_tensor(cg::OperatorNodeBase* opr, bool share) {
    // TODO : maybe some tensor should copy value from origin opr rather than
    // share the RawStorage
    mgb_assert(share, "can't share memory with opr %s", opr->cname());
    if (opr->same_type<opr::ImmutableTensor>()) {
        auto&& dv = opr->cast_final_safe<opr::ImmutableTensor>().value();
        HostTensorND hv(dv.comp_node(), dv.shape(), dv.dtype());
        const DeviceTensorND* cpu_value;
        // get host value
        if (opr->owner_graph() == m_graph.get()) {
            CUR_OPR_GUARD(opr);
            m_static_infer_manager->update();
            cpu_value = m_static_infer_manager->infer_value_fallible(opr->output(0));
        } else {
            cpu_value = opr->owner_graph()->static_infer_manager().infer_value_fallible(opr->output(0));
        }
        mgb_assert(cpu_value);
        mgb_assert(cpu_value->comp_node() == CompNode::default_cpu());
        // default_cpu is synchronous with respect to caller
        hv.proxy_to_default_cpu().copy_from_fixlayout(*cpu_value);
        return Tensor::make(dv, hv);
    } else if (opr->same_type<opr::SharedDeviceTensor>()) {
        return Tensor::make(opr->cast_final_safe<opr::SharedDeviceTensor>().get_dev_tensor());
    } else {
        return {};
    }
}

870 871
thread_local std::unique_ptr<MegBrainError> ProxyGraph::tm_async_error;

872 873 874 875
} // namespace imperative
} // namespace mgb

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}