test_qat.py 6.2 KB
Newer Older
1
import io
2 3 4
from itertools import product

import numpy as np
5
import pytest
6

7 8 9 10
import megengine.utils.comp_graph_tools as cgtools
from megengine import jit, tensor
from megengine.distributed.helper import get_device_count_by_fork
from megengine.functional import expand_dims
11
from megengine.module import (
12
    BatchMatMulActivation,
13 14 15 16 17 18 19
    Conv2d,
    ConvBn2d,
    ConvRelu2d,
    DequantStub,
    Module,
    QuantStub,
)
20 21 22 23 24 25
from megengine.quantization.quantize import (
    disable_fake_quant,
    enable_fake_quant,
    quantize,
    quantize_qat,
)
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41


def test_qat_convbn2d():
    in_channels = 32
    out_channels = 64
    kernel_size = 3
    for groups, bias in product([1, 4], [True, False]):
        module = ConvBn2d(
            in_channels, out_channels, kernel_size, groups=groups, bias=bias
        )
        module.train()
        qat_module = quantize_qat(module, inplace=False)
        disable_fake_quant(qat_module)
        inputs = tensor(np.random.randn(4, in_channels, 32, 32).astype(np.float32))
        normal_outputs = module(inputs)
        qat_outputs = qat_module(inputs)
42 43 44 45
        np.testing.assert_allclose(
            normal_outputs.numpy(), qat_outputs.numpy(), atol=5e-6
        )
        np.testing.assert_allclose(
46 47
            module.bn.running_mean.numpy(),
            qat_module.bn.running_mean.numpy(),
48
            atol=5e-8,
49
        )
50 51
        np.testing.assert_allclose(
            module.bn.running_var.numpy(), qat_module.bn.running_var.numpy(), atol=5e-7,
52 53 54 55 56
        )
        module.eval()
        normal_outputs = module(inputs)
        qat_module.eval()
        qat_outputs = qat_module(inputs)
57 58 59
        np.testing.assert_allclose(
            normal_outputs.numpy(), qat_outputs.numpy(), atol=5e-6
        )
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94


def test_qat_conv():

    in_channels = 32
    out_channels = 64
    kernel_size = 3

    class TestNet(Module):
        def __init__(self, groups, bias):
            super().__init__()
            self.quant = QuantStub()
            self.dequant = DequantStub()
            self.conv = Conv2d(
                in_channels, out_channels, kernel_size, groups=groups, bias=bias
            )
            self.conv_relu = ConvRelu2d(
                out_channels, in_channels, kernel_size, groups=groups, bias=bias
            )

        def forward(self, inp):
            out = self.quant(inp)
            out = self.conv(out)
            out = self.conv_relu(out)
            out = self.dequant(out)
            return out

    inputs = tensor(np.random.randn(4, in_channels, 32, 32).astype(np.float32))
    for groups, bias in product([1, 4], [True, False]):
        net = TestNet(groups, bias)
        net.train()
        qat_net = quantize_qat(net, inplace=False)
        disable_fake_quant(qat_net)
        normal_outputs = net(inputs)
        qat_outputs = qat_net(inputs)
95
        np.testing.assert_allclose(normal_outputs.numpy(), qat_outputs.numpy())
96 97 98 99 100

        net.eval()
        normal_outputs = net(inputs)
        qat_net.eval()
        qat_outputs = qat_net(inputs)
101
        np.testing.assert_allclose(normal_outputs.numpy(), qat_outputs.numpy())
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203


@pytest.mark.skipif(
    get_device_count_by_fork("gpu") > 0, reason="no int8 algorithm on cuda"
)
def test_qat_batchmatmul_activation():
    batch = 4
    in_features = 8
    out_features = 4

    class TestNet(Module):
        def __init__(self, bias):
            super().__init__()
            self.quant = QuantStub()
            self.dequant = DequantStub()
            self.batch_mm = BatchMatMulActivation(
                batch, in_features, out_features, bias=bias
            )

        def forward(self, inp):
            out = self.quant(inp)
            out = self.batch_mm(out)
            out = self.dequant(out)
            return out

    inputs = tensor(
        np.random.randn(batch, in_features, out_features).astype(np.float32)
    )
    for bias in (True, False):
        net = TestNet(bias)
        net.train()
        qat_net = quantize_qat(net, inplace=False)
        disable_fake_quant(qat_net)
        normal_outputs = net(inputs)
        qat_outputs = qat_net(inputs)
        np.testing.assert_allclose(normal_outputs.numpy(), qat_outputs.numpy())

        net.eval()
        normal_outputs = net(inputs)
        qat_net.eval()
        qat_outputs = qat_net(inputs)
        np.testing.assert_allclose(normal_outputs.numpy(), qat_outputs.numpy())


@pytest.mark.skip(reason="FIXME: abnormal exit")
def test_quantize_batchmatmul_activation():
    batch = 4
    in_features = 8
    out_features = 4

    class TestNet(Module):
        def __init__(self, bias):
            super().__init__()
            self.quant = QuantStub()
            self.dequant = DequantStub()
            self.batch_mm = BatchMatMulActivation(
                batch, in_features, out_features, bias=bias
            )

        def forward(self, inp):
            out = self.quant(inp)
            out = self.batch_mm(out)
            out = expand_dims(out, -1)
            out = self.dequant(out)
            return out

    inputs = tensor(
        np.random.randn(batch, in_features, out_features).astype(np.float32)
    )
    for bias in (True, False):
        net = TestNet(bias)
        net.train()
        qat_net = quantize_qat(net, inplace=False)
        disable_fake_quant(qat_net)
        normal_outputs = net(inputs)
        qat_outputs = qat_net(inputs)
        np.testing.assert_allclose(normal_outputs.numpy(), qat_outputs.numpy())

        net.eval()
        normal_outputs = net(inputs)
        qat_net.eval()
        qat_outputs = qat_net(inputs)
        np.testing.assert_allclose(normal_outputs.numpy(), qat_outputs.numpy())

        enable_fake_quant(qat_net)
        qat_outputs = qat_net(inputs)
        qnet = quantize(qat_net, inplace=False)
        qnet.eval()
        quantize_outputs = qnet(inputs)
        np.testing.assert_allclose(
            qat_outputs.numpy(), quantize_outputs.numpy(), atol=1e-6
        )

        @jit.trace(capture_as_const=True)
        def f(x):
            qnet.eval()
            return qnet(x)

        f(inputs)
        file = io.BytesIO()
        f.dump(file, enable_nchw4=True)
        file.seek(0)
204 205
        infer_cg = cgtools.GraphInference(file)[0]
        dumped_outputs = list(infer_cg.run(inputs.numpy()).values())[0]
206
        np.testing.assert_allclose(quantize_outputs.numpy(), dumped_outputs, atol=1e-6)