tensorrt_runtime.cpp 11.8 KB
Newer Older
1 2 3 4
/**
 * \file src/tensorrt/test/tensorrt_runtime.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13
 */

#include "megbrain/comp_node_env.h"
M
Megvii Engine Team 已提交
14
#include "megbrain/opr/basic_arith.h"
15 16 17 18 19 20 21
#include "megbrain/test/autocheck.h"
#include "megbrain/test/helper.h"
#include "megbrain/test/megdnn_helper.h"
#include "megbrain/utils/debug.h"

#if MGB_ENABLE_TENSOR_RT

22
#include "make_trt_net.h"
23 24 25
#include "megbrain/tensorrt/tensorrt_opr.h"
#include "megbrain/tensorrt/tensorrt_runtime_opr.h"

26
#include <fstream>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
#include <random>

using namespace mgb;
using namespace nvinfer1;

template <typename T>
using TensorRTUniquePtr = intl::TensorRTUniquePtr<T>;

TEST(TestOprTensorRT, RuntimeBasic) {
    REQUIRE_GPU(1);
    intl::SimpleTensorRTNetwork net;
    auto make_trt = [&net]() {
        auto p = net.create_trt_network(false);
        TensorRTUniquePtr<INetworkDefinition> trt_net{p.second, {}};
        TensorRTUniquePtr<IBuilder> builder{p.first, {}};
        builder->setMaxBatchSize(5);
#if NV_TENSOR_RT_VERSION >= 6001
M
Megvii Engine Team 已提交
44
        TensorRTUniquePtr<IBuilderConfig> build_config{builder->createBuilderConfig()};
45 46 47
        TensorRTUniquePtr<ICudaEngine> cuda_engine{
                builder->buildEngineWithConfig(*trt_net, *build_config)};
#else
M
Megvii Engine Team 已提交
48
        TensorRTUniquePtr<ICudaEngine> cuda_engine{builder->buildCudaEngine(*trt_net)};
49 50 51 52 53 54 55 56
#endif
        TensorRTUniquePtr<IHostMemory> mem{cuda_engine->serialize(), {}};
        return TensorRTRuntimeOpr::make(mem->data(), mem->size(), {net.x})[0];
    };
    auto y2 = make_trt();

    HostTensorND host_z1;
    HostTensorND host_z2;
M
Megvii Engine Team 已提交
57 58
    auto func = net.graph->compile(
            {make_callback_copy(net.y, host_z1), make_callback_copy(y2, host_z2)});
59
    func->execute();
60
    MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 5e-4);
61 62
}

63 64 65 66 67 68 69 70 71
TEST(TestOprTensorRT, RuntimeBasicBatched) {
    REQUIRE_GPU(1);
    intl::BatchedTensorRTNetwork net;
    auto make_trt = [&net]() {
        auto p = net.create_trt_network(false);
        TensorRTUniquePtr<INetworkDefinition> trt_net{p.second, {}};
        TensorRTUniquePtr<IBuilder> builder{p.first, {}};
        builder->setMaxBatchSize(5);
#if NV_TENSOR_RT_VERSION >= 6001
M
Megvii Engine Team 已提交
72
        TensorRTUniquePtr<IBuilderConfig> build_config{builder->createBuilderConfig()};
73 74 75
        TensorRTUniquePtr<ICudaEngine> cuda_engine{
                builder->buildEngineWithConfig(*trt_net, *build_config)};
#else
M
Megvii Engine Team 已提交
76
        TensorRTUniquePtr<ICudaEngine> cuda_engine{builder->buildCudaEngine(*trt_net)};
77 78
#endif
        TensorRTUniquePtr<IHostMemory> mem{cuda_engine->serialize(), {}};
79
        auto nx = opr::Broadcast::make(
M
Megvii Engine Team 已提交
80
                net.x, {1, net.x.shape()[0], net.x.shape()[1], net.x.shape()[2]});
81 82 83 84 85 86
        return TensorRTRuntimeOpr::make(mem->data(), mem->size(), {nx})[0];
    };
    auto y2 = make_trt();

    HostTensorND host_z1;
    HostTensorND host_z2;
M
Megvii Engine Team 已提交
87 88
    auto func = net.graph->compile(
            {make_callback_copy(net.y, host_z1), make_callback_copy(y2, host_z2)});
89 90 91 92
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 5e-4);
}

93 94 95 96 97 98 99 100 101 102 103
TEST(TestOprTensorRT, ConcatRuntimeBasic) {
    REQUIRE_GPU(1);
    intl::ConcatConvTensorRTNetwork net;

    SymbolVar y2;
    {
        auto p = net.create_trt_network(false);
        TensorRTUniquePtr<INetworkDefinition> trt_net{p.second, {}};
        TensorRTUniquePtr<IBuilder> builder{p.first, {}};
        builder->setMaxBatchSize(5);
#if NV_TENSOR_RT_VERSION >= 6001
M
Megvii Engine Team 已提交
104 105
        TensorRTUniquePtr<IBuilderConfig> build_config{builder->createBuilderConfig()};
        auto cuda_engine = builder->buildEngineWithConfig(*trt_net, *build_config);
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
#else
        auto cuda_engine = builder->buildCudaEngine(*trt_net);
#endif
        TensorRTUniquePtr<IHostMemory> mem{cuda_engine->serialize(), {}};

        FILE* fout = fopen(output_file("trt_cuda_engine").c_str(), "wb");
        auto wr = fwrite(mem->data(), 1, mem->size(), fout);
        mgb_assert(wr == mem->size());
        fclose(fout);

        y2 = TensorRTRuntimeOpr::make(
                TensorRTRuntimeOpr::to_shared_ptr_engine(cuda_engine), {},
                {net.x0, net.x1})[0];
    }

    HostTensorND host_z1;
    HostTensorND host_z2;
M
Megvii Engine Team 已提交
123 124
    auto func = net.graph->compile(
            {make_callback_copy(net.y, host_z1), make_callback_copy(y2, host_z2)});
125 126 127 128 129 130 131 132 133 134 135 136 137
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 1e-4);
}

TEST(TestOprTensorRT, RuntimeChangeBatchSize) {
    REQUIRE_GPU(1);
    intl::SimpleTensorRTNetwork net;
    auto make_trt = [&net]() {
        auto p = net.create_trt_network(false);
        TensorRTUniquePtr<INetworkDefinition> trt_net{p.second, {}};
        TensorRTUniquePtr<IBuilder> builder{p.first, {}};
        builder->setMaxBatchSize(10);
#if NV_TENSOR_RT_VERSION >= 6001
M
Megvii Engine Team 已提交
138
        TensorRTUniquePtr<IBuilderConfig> build_config{builder->createBuilderConfig()};
139 140 141
        TensorRTUniquePtr<ICudaEngine> cuda_engine{
                builder->buildEngineWithConfig(*trt_net, *build_config)};
#else
M
Megvii Engine Team 已提交
142
        TensorRTUniquePtr<ICudaEngine> cuda_engine{builder->buildCudaEngine(*trt_net)};
143 144 145 146 147 148 149 150
#endif
        TensorRTUniquePtr<IHostMemory> mem{cuda_engine->serialize(), {}};
        return TensorRTRuntimeOpr::make(mem->data(), mem->size(), {net.x})[0];
    };
    auto y2 = make_trt();

    HostTensorND host_z1;
    HostTensorND host_z2;
M
Megvii Engine Team 已提交
151 152
    auto func = net.graph->compile(
            {make_callback_copy(net.y, host_z1), make_callback_copy(y2, host_z2)});
153
    func->execute();
154
    MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 5e-4);
155 156
    *net.host_x = *net.gen({1, 23, 28, 28});
    func->execute();
157
    MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 5e-4);
158 159
    *net.host_x = *net.gen({10, 23, 28, 28});
    func->execute();
160
    MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 5e-4);
161 162
}

163 164 165 166 167 168 169 170 171 172
#if NV_TENSOR_RT_VERSION >= 6001
TEST(TestOprTensorRT, IOFormatFree) {
    size_t N = 1, C = 3, H = 7, W = 7;
    REQUIRE_GPU(1);
    TensorRTUniquePtr<IBuilder> builder{
            createInferBuilder(TensorRTOpr::Logger::instance()), {}};
    nvinfer1::NetworkDefinitionCreationFlags flags;
    ::memset(&flags, 0, sizeof(nvinfer1::NetworkDefinitionCreationFlags));
    flags = 1 << static_cast<int>(
                    nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
M
Megvii Engine Team 已提交
173
    TensorRTUniquePtr<INetworkDefinition> network{builder->createNetworkV2(flags), {}};
174 175 176
    auto cast = [](size_t i) { return static_cast<int>(i); };
    ITensor* data = network->addInput(
            "data", DataType::kINT8, Dims4{cast(N), cast(C), cast(H), cast(W)});
M
Megvii Engine Team 已提交
177
    TensorFormats formats = 1 << static_cast<int>(nvinfer1::TensorFormat::kCHW4);
178 179 180 181 182 183 184 185 186
    data->setAllowedFormats(formats);
    data->setDynamicRange(-127.f * 1.2f, 127.f * 1.2f);
    HostTensorGenerator<> fgen;
    auto mean = fgen({N, C, H, W});
    Weights mean_weights{DataType::kFLOAT, nullptr, 0};
    mean_weights.values = mean->raw_ptr();
    mean_weights.count = N * C * H * W;
    auto constant = network->addConstant(
            Dims4{cast(N), cast(C), cast(H), cast(W)}, mean_weights);
M
Megvii Engine Team 已提交
187 188
    auto out = network->addElementWise(
            *network->getInput(0), *constant->getOutput(0), ElementWiseOperation::kSUB);
189 190 191 192 193 194
    out->getOutput(0)->setDynamicRange(-127.f * 2.3f, 127.f * 2.3f);
    network->markOutput(*out->getOutput(0));
    network->getInput(0)->setType(DataType::kINT8);
    network->getOutput(0)->setType(DataType::kFLOAT);
    network->getOutput(0)->setAllowedFormats(
            1 << static_cast<int>(nvinfer1::TensorFormat::kLINEAR));
M
Megvii Engine Team 已提交
195
    TensorRTUniquePtr<IBuilderConfig> build_config{builder->createBuilderConfig()};
196 197 198 199 200 201 202 203 204
    build_config->setFlag(BuilderFlag::kINT8);
    build_config->setFlag(BuilderFlag::kSTRICT_TYPES);
    TensorRTUniquePtr<ICudaEngine> cuda_engine{
            builder->buildEngineWithConfig(*network, *build_config)};
    TensorRTUniquePtr<IHostMemory> mem{cuda_engine->serialize(), {}};

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
205
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
206
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
207
                opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name), dtype);
208 209 210 211 212 213 214 215 216 217
    };
    auto x = mkvar("x", {N, C, H, W}, dtype::QuantizedS8(1.2f));
    auto fx = opr::TypeCvt::make(x, dtype::Float32());
    auto wval = opr::SharedDeviceTensor::make(*graph, *mean).rename("mean");
    auto z = fx - wval;
    HostTensorND y1;
    auto func1 = graph->compile({make_callback_copy(z, y1)});
    func1->execute();

    TensorShape shp{N, 1, H, W};
M
Megvii Engine Team 已提交
218 219
    auto host =
            std::make_shared<HostTensorND>(x.node()->comp_node(), x.node()->dtype());
220 221 222 223 224 225 226 227 228 229 230 231 232 233
    host->resize(shp);
    auto ptr = host->raw_ptr();
    size_t size_bytes = TensorLayout{shp, x.node()->dtype()}.span().dist_byte();
    std::memset(ptr, 0, size_bytes);
    auto padding = opr::ImmutableTensor::make(*graph, *host);
    x = opr::Concat::make({x, padding}, 1);

    auto nchw2nchw4 = [](SymbolVar x) {
        auto xshp = opr::GetVarShape::make(x);

        auto cv = [&x](int v) { return x.make_scalar(v); };
        auto sub = [&xshp, &cv](int idx) {
            return opr::IndexAt::make(xshp, {{0, cv(idx)}});
        };
M
Megvii Engine Team 已提交
234
        auto tshp = opr::Concat::make({sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
235 236 237 238 239 240 241 242 243 244 245 246 247
        auto y0 = opr::Reshape::make(x, tshp);
        auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
        return y1;
    };
    x = nchw2nchw4(x);
    auto trt = TensorRTRuntimeOpr::make(mem->data(), mem->size(), {x})[0];
    HostTensorND y2;
    auto func2 = graph->compile({make_callback_copy(trt, y2)});
    func2->execute();
    MGB_ASSERT_TENSOR_EQ(y1, y2);
}
#endif

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
TEST(TestOprTensorRT, FlattenConcatPlugin) {
    REQUIRE_GPU(1);
    intl::ReshapeConcatTensorRTNetwork net;
    auto make_trt = [&net]() {
        auto p = net.create_trt_network(false);
        TensorRTUniquePtr<INetworkDefinition> trt_net{p.second, {}};
        TensorRTUniquePtr<IBuilder> builder{p.first, {}};
        builder->setMaxBatchSize(5);
#if NV_TENSOR_RT_VERSION >= 6001
        TensorRTUniquePtr<IBuilderConfig> build_config{builder->createBuilderConfig()};
        TensorRTUniquePtr<ICudaEngine> cuda_engine{
                builder->buildEngineWithConfig(*trt_net, *build_config)};
#else
        TensorRTUniquePtr<ICudaEngine> cuda_engine{builder->buildCudaEngine(*trt_net)};
#endif
        TensorRTUniquePtr<IHostMemory> mem{cuda_engine->serialize(), {}};
        return TensorRTRuntimeOpr::make(mem->data(), mem->size(), {net.x0, net.y0})[0];
    };
    auto z2 = make_trt();

    HostTensorND host_z1;
    HostTensorND host_z2;
    auto func = net.graph->compile(
            {make_callback_copy(net.z, host_z1), make_callback_copy(z2, host_z2)});
    func->execute();
    MGB_ASSERT_TENSOR_EQ(host_z1, host_z2);
}

TEST(TestOprTensorRT, ICudaEngine) {
    REQUIRE_GPU(1);
    CompNode::load("xpu0").activate();
    std::ifstream engineFile("model.trt", std::ios::binary);
    if (!engineFile)
        return;

    engineFile.seekg(0, engineFile.end);
    long int fsize = engineFile.tellg();
    engineFile.seekg(0, engineFile.beg);

    std::vector<char> engineData(fsize);
    engineFile.read(engineData.data(), fsize);
    if (!engineFile)
        return;

    std::shared_ptr<ComputingGraph> graph;
    graph = ComputingGraph::make();

    HostTensorGenerator<> gen;
    std::shared_ptr<HostTensorND> host_x0, host_y0;
    host_x0 = gen({2, 3, 375, 500});
    host_y0 = gen({2, 1, 1, 3});

    SymbolVar x0 = Host2DeviceCopy::make(*graph, host_x0);
    SymbolVar y0 = Host2DeviceCopy::make(*graph, host_y0);

    auto z = TensorRTRuntimeOpr::make(engineData.data(), fsize, {x0, y0})[0];
    HostTensorND host_z;

    auto func = graph->compile({make_callback_copy(z, host_z)});
    func->execute();
}

310 311 312
#endif  // MGB_ENABLE_TENSOR_RT

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}