codegen.cpp 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/**
 * \file src/jit/test/codegen.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "./helper.h"

#include "megbrain/jit/executor_opr.h"
#include "megbrain/opr/basic_arith_wrapper.h"
#include "megbrain/test/helper.h"

#if MGB_JIT
using namespace mgb;
using namespace jit;

#define FOREACH_CASE(cb) cb(simple) cb(grad)

namespace {
#define def_tag(x) \
    struct x {};
FOREACH_CASE(def_tag)
#undef def_tag

#define t(n) n,
using test_types = ::testing::Types<FOREACH_CASE(t) void>;
#undef t

template <typename tag>
void run(Backend backend, CompNode cn);

template <>
void run<simple>(Backend backend, CompNode cn) {
    set_backend(backend);
    auto graph = ComputingGraph::make();
    HostTensorGenerator<> gen;
    auto host_x0 = gen({23, 42}, cn), host_x1 = gen({23, 1}, cn),
         host_x2 = gen({1, 42}, cn);

    auto a = opr::Host2DeviceCopy::make(*graph, host_x0),
         b = opr::Host2DeviceCopy::make(*graph, host_x1),
         c = opr::Host2DeviceCopy::make(*graph, host_x2);

    a = opr::TypeCvt::make(a, dtype::Float16{});

    auto y = a + b * c;
    y = opr::TypeCvt::make(y, dtype::Float16{});
    y = opr::TypeCvt::make((y + y.make_scalar_dt(1.f)), dtype::Float32{});

    VarNodeArray inputs{a.node(), b.node(), c.node()}, outputs{y.node()};
    auto ig_gen =
            std::make_unique<InternalGraphGenrator>(y.node()->owner_opr());

    for (auto i : get_rev_topo_order(y)) {
        if (!i->same_type<opr::Host2DeviceCopy>()) {
            ig_gen->add_opr(i);
        }
    }

    auto igraph = ig_gen->generate();
    auto y_jit = JITExecutor::make(igraph, ig_gen->orig_inps());

    HostTensorND host_y, host_y_jit;
    auto func = graph->compile({make_callback_copy(y, host_y),
                                make_callback_copy(y_jit, host_y_jit)});
    func->execute();

    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_jit, 5e-3);
};

template <>
void run<grad>(Backend backend, CompNode cn) {
    set_backend(backend);
    auto graph = ComputingGraph::make();
    HostTensorGenerator<> gen;
    auto host_x0 = gen({23, 42}, cn), host_x1 = gen({23, 1}, cn),
         host_x2 = gen({1, 42}, cn);

    auto a = opr::Host2DeviceCopy::make(*graph, host_x0),
         b = opr::Host2DeviceCopy::make(*graph, host_x1),
         c = opr::Host2DeviceCopy::make(*graph, host_x2);

    a = opr::TypeCvt::make(a, dtype::Float16{});

    auto y = opr::floor_div(a, opr::abs(b) + 0.1f) * opr::sin(c);

    VarNodeArray inputs{a.node(), b.node(), c.node()}, outputs{y.node()};
    auto ig_gen =
            std::make_unique<InternalGraphGenrator>(y.node()->owner_opr());

    for (auto i : get_rev_topo_order(y)) {
        if (!i->same_type<opr::Host2DeviceCopy>()) {
            ig_gen->add_opr(i);
        }
    }

    auto igraph = ig_gen->generate();
    auto y_jit = JITExecutor::make(igraph, ig_gen->orig_inps());

    HostTensorND host_y, host_y_jit;
    auto func = graph->compile({make_callback_copy(y, host_y),
                                make_callback_copy(y_jit, host_y_jit)});
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y, host_y_jit);

    auto grad = [loss = opr::reduce_sum(y_jit, y_jit.make_scalar(1))](
            SymbolVar x) {
        return cg::grad(loss, x, false, false).node();
    };
    ASSERT_EQ(nullptr, grad(a));
    ASSERT_EQ(nullptr, grad(b));
    ASSERT_NE(nullptr, grad(c));
};

template <>
void run<void>(Backend, CompNode) {}
}  // anonymous namespace

#if MGB_JIT_HALIDE
template <typename tag>
class TestJITHalideCodeGenCuda : public ::testing::Test {};
TYPED_TEST_CASE(TestJITHalideCodeGenCuda, test_types);
TYPED_TEST(TestJITHalideCodeGenCuda, run) {
    REQUIRE_GPU(1);
    run<TypeParam>(Backend::HALIDE, CompNode::load("gpu0"));
}
#endif

template <typename tag>
class TestJITNvrtcCodeGen : public ::testing::Test {};
TYPED_TEST_CASE(TestJITNvrtcCodeGen, test_types);
TYPED_TEST(TestJITNvrtcCodeGen, run) {
    REQUIRE_GPU(1);
    run<TypeParam>(Backend::NVRTC, CompNode::load("gpu0"));
}

#endif  // MGB_JIT

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}