tensor_utils.cpp 22.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/common.h"
#include "megbrain/dtype.h"
#include "megbrain/imperative/ops/autogen.h"
#include "megbrain/imperative/ops/backward_graph.h"
#include "megbrain/imperative/ops/utility.h"
#include "megbrain/imperative/profiler.h"
#include "megbrain/imperative/transformations/eval.h"
#include "megbrain/imperative/transformations/lazy.h"
#include "megbrain/imperative/transformations/scalar.h"
#include "megbrain/imperative/transformations/symbol.h"
#include "megbrain/imperative/transformations/trace.h"
#include "megbrain/imperative/utils/map.h"
#include "megbrain/imperative/utils/stats.h"
#include "megbrain/opr/io.h"
#include "megbrain/plugin/profiler.h"

#include "./common.h"
#include "./grad.h"
#include "./graph_rt.h"
#include "./helper.h"
#include "./module_trace.h"
#include "./numpy_dtypes.h"
#include "./tensor.h"
#include "./tensor_utils.h"
#include "./transformation.h"

#include <object.h>
#include <pybind11/numpy.h>
#include <pybind11/operators.h>
#include <pybind11/pytypes.h>
#include <pyerrors.h>
#include <range/v3/all.hpp>
#include <string>

#include <unordered_map>

#include "../../src/impl/mgb_cg_impl.h"

namespace py = pybind11;
namespace views = ranges::views;

namespace mgb::imperative::python {

bool is_scalar(PyObject* tensor) {
    if (py::isinstance<PySymbolVar>(py::handle(tensor))) {
        auto var = py::handle(tensor).cast<PySymbolVar*>();
        return var->is_scalar;
    }
    auto* tw = TensorWrapper::try_cast(tensor);
    if (tw) {
        return tw->m_tensor->is_scalar();
    }
    return PyArray_CheckAnyScalar(tensor);
}

bool is_bool_list(PyObject* arg) {
    if (!PyList_Check(arg)) {
        return false;
    }
    size_t sz = PyList_Size(arg);
    if (!sz) {
        return false;
    }
    for (size_t i = 0; i < sz; ++i) {
        PyObject* handle = PyList_GetItem(arg, i);
        if (!PyBool_Check(handle)) {
            return false;
        }
    }
    return true;
}

bool is_bool_dtype(PyObject* args) {
    if (!PyObject_HasAttrString(args, "dtype"))
        return false;
    PyObject* dobj = PyObject_GetAttrString(args, "dtype");
    PyArray_Descr* dtype;
    PyArray_DescrConverter(dobj, &dtype);
    bool ret = (dtype->kind == 'b');
    Py_XDECREF(dtype);
    Py_XDECREF(dobj);
    return ret;
}

py::object _Const(
        py::handle value, py::handle dtype, py::handle device, py::handle ref) {
    py::object val = py::reinterpret_borrow<py::object>(value);
    if (PyArray_Check(value.ptr())) {
        py::tuple strides =
                py::reinterpret_borrow<py::tuple>(getattr(value, "strides"));
        bool need_squeeze = false;
        for (size_t i = 0; i < strides.size(); ++i) {
            if (strides[i].cast<ptrdiff_t>() == 0) {
                need_squeeze = true;
            }
        }
        if (need_squeeze) {
            val = py::reinterpret_borrow<py::array>(value);
            val = val.attr("squeeze")();
            val = val.attr("reshape")(val.attr("shape"));
        }
    }
    if (py::isinstance<PySymbolVar>(ref)) {
        auto ref_var = ref.cast<PySymbolVar*>();
        auto* graph = ref_var->m_node->owner_graph();
        auto cn = device.cast<CompNode>();
        OperatorNodeConfig config(cn);
        auto hv = npy::np2tensor(
                val.ptr(), npy::Meth::borrow(cn), dtype.cast<mgb::DType>());
        auto typeobj = ref.get_type();
        return typeobj(opr::ImmutableTensor::make(*graph, hv, config).node());
    }
    py::tuple tup = py::make_tuple(val, dtype, device, true, false, py::none());
    return TensorWrapper::make(py_tensor_type, tup.ptr(), nullptr);
}

py::tuple _make_shape_tuple(py::handle shape) {
    py::list orig;
    py::list ret(0);
    auto solve_one = [&](py::handle val) {
        if (TensorWrapper::try_cast(val.ptr()) || py::isinstance<PySymbolVar>(val)) {
            py::object np = getattr(val, "numpy")();
            PyArrayObject* arr = (PyArrayObject*)np.ptr();
            PyObject* maybe_list = PyArray_ToList(arr);
            if (PyList_Check(maybe_list)) {
                py::list may = py::reinterpret_steal<py::list>(maybe_list);
                for (size_t i = 0; i < may.size(); ++i) {
                    ret.append(may[i]);
                }
            } else {
                mgb_assert(PyLong_Check(maybe_list));
                ret.append(PyLong_AsLong(maybe_list));
                Py_XDECREF(maybe_list);
            }
        } else if (PyArray_Check(val.ptr())) {
            ret.append(PyArray_PyIntAsInt(val.ptr()));
        } else {
            ret.append(PyLong_AsLong(val.ptr()));
        }
    };
    if (PyArray_Check(shape.ptr()) && !PyArray_CheckAnyScalar(shape.ptr())) {
        orig = py::reinterpret_steal<py::list>(
                PyArray_ToList((PyArrayObject*)shape.ptr()));
        for (size_t i = 0; i < orig.size(); ++i) {
            solve_one(orig[i]);
        }
    } else if (PyList_Check(shape.ptr())) {
        orig = py::reinterpret_borrow<py::list>(shape);
        for (size_t i = 0; i < orig.size(); ++i) {
            solve_one(orig[i]);
        }
    } else if (PyTuple_Check(shape.ptr())) {
        py::tuple tup = py::reinterpret_borrow<py::tuple>(shape);
        for (size_t i = 0; i < tup.size(); ++i) {
            solve_one(tup[i]);
        }
    } else {
        solve_one(shape);
    }
    return py::reinterpret_steal<py::tuple>(PyList_AsTuple(ret.ptr()));
}

py::object _get_index(py::object tensor, py::object src) {
    if (!TensorWrapper::try_cast(tensor.ptr()) &&
        !py::isinstance<PySymbolVar>(tensor)) {
        auto get_const = [&](mgb::DType dtype) -> py::object {
            return _Const(tensor, py::cast(dtype), src.attr("device"), src);
        };
        if (is_bool_list(tensor.ptr()) || is_bool_dtype(tensor.ptr())) {
            tensor = get_const(dtype::Bool());
        } else {
            tensor = get_const(dtype::Int32());
        }
        if (!is_bool_dtype(tensor.ptr())) {
            return tensor;
        }
    } else {
        if (!is_bool_dtype(tensor.ptr())) {
            return tensor;
        }
    }
    static std::shared_ptr<OpDef> op = CondTake::make();
    std::vector<PyObject*> p;
    p.resize(3);
    py::object Op = py::cast(op);
    p[0] = Op.ptr();
    p[1] = tensor.ptr();
    p[2] = tensor.ptr();
    py::tuple ret =
            py::reinterpret_steal<py::object>(py_apply(NULL, p.data(), p.size()));
    return ret[1];
}

py::tuple _try_cond_take(py::handle tensor, py::handle index) {
    if (!hasattr(index, "dtype") || !hasattr(index, "shape")) {
        return py::tuple();
    }
    if (!is_bool_dtype(index.ptr()) ||
        _make_shape_tuple(getattr(index, "shape"))
                .not_equal(_make_shape_tuple(getattr(tensor, "shape")))) {
        return py::tuple();
    }
    py::object iobj;
    if (PyArray_Check(index.ptr())) {
        iobj =
                _Const(index, py::cast((mgb::DType)dtype::Bool()),
                       getattr(tensor, "device"), tensor);
    } else {
        iobj = py::reinterpret_borrow<py::object>(index);
    }
    static std::shared_ptr<OpDef> op = CondTake::make();
    std::vector<PyObject*> p;
    p.resize(3);
    py::object Op = py::cast(op);
    p[0] = Op.ptr();
    p[1] = tensor.ptr();
    p[2] = iobj.ptr();
    py::tuple ret =
            py::reinterpret_steal<py::object>(py_apply(NULL, p.data(), p.size()));
    return ret;
}

py::tuple _remove_ellipsis(py::object tensor, py::tuple tuple_val) {
    size_t tuple_size = tuple_val.size();
    size_t ndim_sum = 0, cur_sum = 0;
    int pos = -1;
    bool has_unknown_ndim_bool_index = false;
    for (size_t i = 0; i < tuple_size; ++i) {
        py::object handle = tuple_val[i];
        if (handle.ptr() == Py_Ellipsis) {
            pos = static_cast<int>(i);
            for (size_t j = 0; j < i; ++j) {
                py::object t = tuple_val[j];
                if (t.ptr() == Py_Ellipsis) {
                    throw py::index_error("only one ellipsis is allowed.");
                }
            }
        } else {
            size_t ndim_incr = 1;
            if (hasattr(handle, "dtype") && is_bool_dtype(handle.ptr()) &&
                hasattr(handle, "ndim")) {
                py::object ndim = getattr(handle, "ndim");
                if (PyLong_Check(ndim.ptr())) {
                    ndim_incr = PyLong_AsLong(ndim.ptr());
                } else {
                    has_unknown_ndim_bool_index = true;
                }
            }
            cur_sum += ndim_incr;
        }
    }
    if (pos == -1) {
        return tuple_val;
    } else {
        if (has_unknown_ndim_bool_index) {
            throw py::index_error(
                    "does not support bool index with unknown shape when using "
                    "Ellipsis.");
        }
        try {
            ndim_sum = getattr(tensor, "ndim").cast<size_t>();
        } catch (py::error_already_set& err) {
            throw py::index_error(
                    "does not support Ellipsis when tensor's ndim is unknown.");
        }
        py::tuple ret(ndim_sum - cur_sum + tuple_size - 1);
        size_t idx = 0;
        for (size_t i = 0; i < tuple_size; ++i) {
            if (i == pos) {
                for (size_t j = cur_sum; j < ndim_sum; ++j) {
                    ret[idx++] = PySlice_New(NULL, NULL, NULL);
                }
            } else {
                ret[idx++] = tuple_val[i];
            }
        }
        return ret;
    }
}

py::tuple _expand_bool_dim(py::object tensor, py::tuple tuple_val) {
    py::tuple cur_shape = _make_shape_tuple(py::handle(getattr(tensor, "shape")));
    py::list new_tuple_val(0);

    size_t offset = 0;
    size_t tdim = 0;
    for (size_t i = 0; i < tuple_val.size(); ++i) {
        py::handle k = tuple_val[i];
        if (is_bool_dtype(k.ptr())) {
            size_t ndim = getattr(k, "ndim").cast<size_t>();
            if (ndim > 1) {
                py::tuple ishape = _make_shape_tuple(py::handle(getattr(k, "shape")));
                for (size_t j = 0; j < ndim; ++j) {
                    if (cur_shape[tdim + j - offset].cast<size_t>() !=
                        ishape[j].cast<size_t>()) {
                        std::string msg =
                                "boolean index did not match tensor along dimension " +
                                std::to_string(tdim + j) + "; dimension is " +
                                std::to_string(
                                        cur_shape[tdim + j - offset].cast<size_t>()) +
                                " but corresponding boolean dimension is " +
                                std::to_string(ishape[j].cast<size_t>());
                        throw py::index_error(msg.c_str());
                    }
                }
                py::object new_k = getattr(k, "reshape")(-1);
                py::object kshape = getattr(new_k, "shape");
                py::list new_shape(0);
                PyObject* sym = PyObject_CallObject(cpp_use_symbolic_shape, nullptr);
                bool is_sym = (sym == Py_True);
                Py_XDECREF(sym);
                if (is_sym) {
                    py::object tshape = getattr(tensor, "shape");
                    for (size_t j = 0; j < i; ++j) {
                        new_shape.append(tshape[py::int_(j)]);
                    }
                    new_shape.append(kshape[py::int_(0)]);
                    for (size_t j = tdim + ndim - offset; j < cur_shape.size(); ++j) {
                        new_shape.append(cur_shape[j]);
                    }
                    py::tuple args = py::make_tuple(new_shape);
                    PyObject* shape_tensor =
                            PyObject_CallObject(cpp_astensor1d, args.ptr());
                    py::object reshape_func = getattr(tensor, "reshape");
                    Py_INCREF(shape_tensor);
                    PyObject* Args = PyTuple_New(1);
                    PyTuple_SetItem(Args, 0, shape_tensor);
                    PyObject* new_tensor =
                            PyObject_CallObject(reshape_func.ptr(), Args);
                    Py_XDECREF(Args);
                    tensor = py::reinterpret_steal<py::object>(new_tensor);
                    cur_shape = _make_shape_tuple(py::handle(shape_tensor));
                    Py_XDECREF(shape_tensor);
                } else {
                    for (size_t j = 0; j < i; ++j) {
                        new_shape.append(cur_shape[j]);
                    }
                    new_shape.append(py::reinterpret_borrow<py::tuple>(kshape)[0]);
                    for (size_t j = tdim + ndim - offset; j < cur_shape.size(); ++j) {
                        new_shape.append(cur_shape[j]);
                    }
                    cur_shape = new_shape;
                    tensor = getattr(tensor, "reshape")(cur_shape);
                }
                offset++;
                tdim += ndim;
            }
            new_tuple_val.append(k);
        } else {
            new_tuple_val.append(k);
            tdim++;
        }
    }
    return py::make_tuple(tensor, py::reinterpret_borrow<py::tuple>(new_tuple_val));
}

py::tuple _unpack_indexes(py::handle inp_hdl, py::handle idx_hdl) {
    py::object inp = py::reinterpret_borrow<py::object>(inp_hdl);
    py::tuple tuple_val;
    if (py::isinstance<py::tuple>(idx_hdl)) {
        tuple_val = py::reinterpret_borrow<py::tuple>(idx_hdl);
    } else {
        tuple_val = py::make_tuple(idx_hdl);
    }

    bool use_subtensor = true;
    bool need_remove_ellipsis = false;
    bool need_expand_bool_dim = false;
    size_t idx_ndim = 0;
    for (size_t i = 0; i < tuple_val.size(); ++i) {
        py::object k = tuple_val[i];
        if (k.ptr() == Py_None) {
            throw py::index_error("newaxis is not allowed here");
        } else if (k.ptr() == Py_Ellipsis) {
            need_remove_ellipsis = true;
        } else {
            if (is_bool_dtype(k.ptr()) && hasattr(k, "ndim")) {
                size_t ndim = getattr(k, "ndim").cast<size_t>();
                idx_ndim += ndim;
                if (ndim > 1) {
                    need_expand_bool_dim = true;
                }
            } else {
                idx_ndim++;
            }
        }
    }
    try {
        size_t inp_ndim = getattr(inp, "ndim").cast<size_t>();
        if (idx_ndim > inp_ndim) {
            std::string msg = "too many indices for tensor: tensor is " +
                              std::to_string(inp_ndim) + "-dimensional, but " +
                              std::to_string(idx_ndim) + " were indexed";
            throw py::index_error(msg.c_str());
        }
    } catch (py::error_already_set& err) {
        ;  // ignore
    }
    if (need_remove_ellipsis) {
        tuple_val = _remove_ellipsis(inp, tuple_val);
    }

    if (need_expand_bool_dim) {
        py::object shape = getattr(inp, "shape");
        if (shape.ptr() != Py_None) {
            py::tuple ret = _expand_bool_dim(inp, tuple_val);
            inp = ret[0];
            tuple_val = ret[1];
        }
    }

    py::list items;
    py::list tensors;
    int cur_axis = -1;

    for (size_t i = 0; i < tuple_val.size(); ++i) {
        py::object handle = tuple_val[i];
        cur_axis++;
        if (!is_scalar(handle.ptr()) && !PySlice_Check(handle.ptr())) {
            use_subtensor = false;
        }
        py::list item;
        item.append(cur_axis);
        auto push = [&](PyObject* v) {
            if (v == Py_None) {
                item.append(false);
            } else {
                item.append(true);
                tensors.append(_get_index(py::reinterpret_borrow<py::object>(v), inp));
            }
        };

        if (PySlice_Check(handle.ptr())) {
            PySliceObject* s = (PySliceObject*)handle.ptr();
            if (s->start == Py_None && s->stop == Py_None && s->step == Py_None) {
                continue;
            }
            push(s->start);
            push(s->stop);
            push(s->step);
            item.append(false);
        } else {
            for (size_t j = 0; j < 3; j++)
                item.append(false);
            push(handle.ptr());
        }
        items.append(item);
    }

    return py::make_tuple(inp, tensors, items, use_subtensor, need_expand_bool_dim);
}

py::object _getitem_cpp(py::handle inp_hdl, py::handle idx_hdl) {
    py::tuple try_res = _try_cond_take(inp_hdl, idx_hdl);
    if (try_res.size() == 2) {
        return try_res[0];
    }
    py::tuple up = _unpack_indexes(inp_hdl, idx_hdl);
    py::object tensor = py::reinterpret_borrow<py::object>(up[0]);
    py::list tensors = py::reinterpret_borrow<py::list>(up[1]);
    py::list py_items = py::reinterpret_borrow<py::list>(up[2]);
    std::vector<std::tuple<int8_t, bool, bool, bool, bool>> cpp_items;
    for (size_t i = 0; i < py_items.size(); ++i) {
        py::list item = py::reinterpret_borrow<py::list>(py_items[i]);
        cpp_items.push_back(
                {item[0].cast<int8_t>(), item[1].cast<bool>(), item[2].cast<bool>(),
                 item[3].cast<bool>(), item[4].cast<bool>()});
    }
    static std::shared_ptr<OpDef> op;
    if (up[3].cast<bool>()) {
        op = Subtensor::make(cpp_items);
    } else {
        op = IndexingMultiAxisVec::make(cpp_items);
    }
    std::vector<PyObject*> p;
    p.resize(tensors.size() + 2);
    py::object Op = py::cast(op);
    p[0] = Op.ptr();
    p[1] = tensor.ptr();
    for (size_t i = 0; i < tensors.size(); ++i) {
        p[i + 2] = tensors[i].ptr();
    }
    py::tuple ret =
            py::reinterpret_steal<py::object>(py_apply(NULL, p.data(), p.size()));
    return ret[0];
}

py::object _setitem_cpp(py::handle inp_hdl, py::handle idx_hdl, py::handle val_hdl) {
    py::object org_shape = getattr(inp_hdl, "shape");
    py::object val = py::reinterpret_borrow<py::object>(val_hdl);
    if (!TensorWrapper::try_cast(val.ptr()) && !py::isinstance<PySymbolVar>(val)) {
        val =
                _Const(val_hdl, getattr(inp_hdl, "dtype"), getattr(inp_hdl, "device"),
                       inp_hdl);
    }

    py::tuple up = _unpack_indexes(inp_hdl, idx_hdl);
    py::object tensor = py::reinterpret_borrow<py::object>(up[0]);
    py::list tensors = py::reinterpret_borrow<py::list>(up[1]);
    py::list py_items = py::reinterpret_borrow<py::list>(up[2]);
    std::vector<std::tuple<int8_t, bool, bool, bool, bool>> cpp_items;
    for (size_t i = 0; i < py_items.size(); ++i) {
        py::list item = py::reinterpret_borrow<py::list>(py_items[i]);
        cpp_items.push_back(
                {item[0].cast<int8_t>(), item[1].cast<bool>(), item[2].cast<bool>(),
                 item[3].cast<bool>(), item[4].cast<bool>()});
    }
    static std::shared_ptr<OpDef> op, set_op;
    if (up[3].cast<bool>()) {
        op = Subtensor::make(cpp_items);
    } else {
        op = IndexingMultiAxisVec::make(cpp_items);
    }
    std::vector<PyObject*> p;
    p.resize(tensors.size() + 2);
    py::object Op = py::cast(op);
    p[0] = Op.ptr();
    p[1] = tensor.ptr();
    for (size_t i = 0; i < tensors.size(); ++i) {
        p[i + 2] = tensors[i].ptr();
    }
    py::tuple ret =
            py::reinterpret_steal<py::object>(py_apply(NULL, p.data(), p.size()));
    py::object tmp_result = ret[0];

    try {
        py::object value_tuple_shape = val.attr("_tuple_shape");
        py::object tmp_result_tuple_shape = tmp_result.attr("_tuple_shape");
        py::tuple value_shape = py::reinterpret_borrow<py::tuple>(value_tuple_shape);
        py::tuple tmp_result_shape =
                py::reinterpret_borrow<py::tuple>(tmp_result_tuple_shape);
        for (size_t i = 0; i < value_shape.size() && i < tmp_result_shape.size(); ++i) {
            size_t vs = value_shape[value_shape.size() - i - 1].cast<size_t>();
            size_t ts =
                    tmp_result_shape[tmp_result_shape.size() - i - 1].cast<size_t>();
            if (vs != 1 && vs != ts) {
                std::string lhs = "", rhs = "";
                for (size_t j = 0; j < tmp_result_shape.size(); ++j) {
                    lhs += std::to_string(tmp_result_shape[j].cast<size_t>());
                    if (j)
                        lhs += ",";
                }
                for (size_t j = 0; j < value_shape.size(); ++j) {
                    rhs += std::to_string(value_shape[j].cast<size_t>());
                    if (j)
                        rhs += ",";
                }
                throw py::value_error(
                        "cannot copy tensor with shape (" + rhs +
                        ") to subtensor with shape (" + lhs + ")");
            }
        }
    } catch (py::error_already_set& err) {
        ;
    }

    py::object broadcast_func = getattr(val, "_broadcast");
    PyObject* Args = PyTuple_New(1);
    PyTuple_SetItem(Args, 0, getattr(tmp_result, "shape").release().ptr());
    PyObject* new_val = PyObject_CallObject(broadcast_func.ptr(), Args);
    Py_XDECREF(Args);
    val = py::reinterpret_steal<py::object>(new_val);

    if (up[3].cast<bool>()) {
        set_op = SetSubtensor::make(cpp_items);
    } else {
        set_op = IndexingSetMultiAxisVec::make(cpp_items);
    }

    std::vector<PyObject*> q;
    q.resize(tensors.size() + 3);
    py::object Set_Op = py::cast(set_op);
    q[0] = Set_Op.ptr();
    q[1] = tensor.ptr();
    q[2] = val.ptr();
    for (size_t i = 0; i < tensors.size(); ++i) {
        q[i + 3] = tensors[i].ptr();
    }
    py::tuple result =
            py::reinterpret_steal<py::object>(py_apply(NULL, q.data(), q.size()));
    py::object res = result[0];

    if (up[4].cast<bool>()) {
        py::object reshape_func = getattr(res, "reshape");
        PyObject* Args = PyTuple_New(1);
        PyTuple_SetItem(Args, 0, org_shape.release().ptr());
        PyObject* new_tensor = PyObject_CallObject(reshape_func.ptr(), Args);
        Py_XDECREF(Args);
        res = py::reinterpret_steal<py::object>(new_tensor);
    }

    return res;
}

PyObject* make_shape_tuple(PyObject* self, PyObject* const* args, size_t nargs) {
    try {
        return _make_shape_tuple(py::handle(args[0])).release().ptr();
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
}

PyObject* getitem_cpp(PyObject* self, PyObject* const* args, size_t nargs) {
    try {
        return _getitem_cpp(py::handle(args[0]), py::handle(args[1])).release().ptr();
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
}

PyObject* setitem_cpp(PyObject* self, PyObject* const* args, size_t nargs) {
    try {
        return _setitem_cpp(
                       py::handle(args[0]), py::handle(args[1]), py::handle(args[2]))
                .release()
                .ptr();
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
}

}  // namespace mgb::imperative::python