cudnn_conv.cpp 5.4 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/cuda/conv_bias/cudnn_conv.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "src/cuda/conv_bias/algo.h"
#include "src/cuda/cudnn_wrapper.h"
#include "src/cuda/utils.h"
#include "src/common/conv_bias.h"

using namespace megdnn;
using namespace cuda;
using namespace conv_bias;

bool ConvBiasForwardImpl::AlgoCUDNNConv::is_available(
        const SizeArgs& args) const {
    if (args.z_layout->ndim > 0)
        return false;

26 27 28 29 30 31 32 33
    if (args.filter_meta.format != Param::Format::NCHW &&
        args.filter_meta.format != Param::Format::NHWC) {
        if (!args.src_layout->is_contiguous() ||
            !args.dst_layout->is_contiguous()) {
            return false;
        }
    }

34 35 36 37 38 39 40 41 42
    // FIXME: cudnn cannot handle the case when the initial value of dst tensor
    // contains nan and beta is zero, because the result of 0.f * nan is still
    // nan
    if (args.src_layout->dtype.enumv() == DTypeEnum::QuantizedS8 &&
        args.dst_layout->dtype.enumv() == DTypeEnum::Float32 &&
        args.opr->param().format == param::ConvBias::Format::NCHW) {
        return false;
    }

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    auto dst_layout = *args.dst_layout;
    if (dst_layout.dtype.enumv() != args.bias_layout->dtype.enumv()) {
        dst_layout.dtype = DType();
        args.opr->check_or_deduce_dtype_fwd(args.src_layout->dtype,
                                            args.filter_layout->dtype,
                                            dst_layout.dtype);
    }
    SizeArgs conv_args = args;
    conv_args.dst_layout = &dst_layout;

    if (!is_cudnn_supported(conv_args))
        return false;
    CUDNNForwardDescs D;
    conv_args.init_conv_desc(D);

    size_t workspace_size;
59 60
    auto& cudnn = conv_args.handle->cudnn();
    auto status = cudnn.GetConvolutionForwardWorkspaceSize(
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
            conv_args.handle->cudnn_handle(), D.src_desc.desc,
            D.filter_desc.desc, D.conv_desc.conv_desc, D.dst_desc.desc,
            m_cudnn_enum, &workspace_size);
    return status == CUDNN_STATUS_SUCCESS;
}

WorkspaceBundle ConvBiasForwardImpl::AlgoCUDNNConv::get_workspace_bundle(
        void* ptr, const SizeArgs& args) const {
    auto dst_layout = *args.dst_layout;
    SmallVector<size_t> sizes;
    if (dst_layout.dtype.enumv() != args.bias_layout->dtype.enumv()) {
        dst_layout.dtype = DType();
        args.opr->check_or_deduce_dtype_fwd(args.src_layout->dtype,
                                            args.filter_layout->dtype,
                                            dst_layout.dtype);
        sizes.push_back(dst_layout.span().dist_byte());
    }

    SizeArgs conv_args = args;
    conv_args.dst_layout = &dst_layout;

    CUDNNForwardDescs D;
    conv_args.init_conv_desc(D);

    size_t conv_workspace_size;
86 87
    auto& cudnn = conv_args.handle->cudnn();
    auto status = cudnn.GetConvolutionForwardWorkspaceSize(
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
            conv_args.handle->cudnn_handle(), D.src_desc.desc,
            D.filter_desc.desc, D.conv_desc.conv_desc, D.dst_desc.desc,
            m_cudnn_enum, &conv_workspace_size);
    megdnn_assert(status == CUDNN_STATUS_SUCCESS,
                  "conv fwd get workspace failed: %s; info: %s",
                  cudnnGetErrorString(status), args.to_string().c_str());
    sizes.insert(sizes.begin(), conv_workspace_size);
    return {ptr, std::move(sizes)};
}

size_t ConvBiasForwardImpl::AlgoCUDNNConv::get_workspace_in_bytes(
        const SizeArgs& args) const {
    return get_workspace_bundle(nullptr, args).total_size_in_bytes();
}

void ConvBiasForwardImpl::AlgoCUDNNConv::exec(const ExecArgs& args) const {
    auto bundle = get_workspace_bundle(args.workspace.raw_ptr, args);
    auto conv_dst_tensor = *args.dst_tensor;
    if (args.dst_layout->dtype.enumv() != args.bias_layout->dtype.enumv()) {
        conv_dst_tensor.raw_ptr = bundle.get(1);
        conv_dst_tensor.layout.dtype = DType();
        args.opr->check_or_deduce_dtype_fwd(args.src_layout->dtype,
                                            args.filter_layout->dtype,
                                            conv_dst_tensor.layout.dtype);
    }

    ExecArgs conv_args = args;
    conv_args.dst_tensor = &conv_dst_tensor;
    conv_args.dst_layout = &conv_dst_tensor.layout;

    {
        CUDNNForwardDescs D;
        conv_args.init_conv_desc(D);
        auto conv_workspace = bundle.get_workspace(0);
        float alpha = 1.0f, beta = 0.0f;
        auto status = cudnnConvolutionForward(
                conv_args.handle->cudnn_handle(), &alpha, D.src_desc.desc,
                conv_args.src_tensor->raw_ptr, D.filter_desc.desc,
                conv_args.filter_tensor->raw_ptr, D.conv_desc.conv_desc,
                m_cudnn_enum, conv_workspace.raw_ptr, conv_workspace.size,
                &beta, D.dst_desc.desc, conv_args.dst_tensor->raw_ptr);
        megdnn_assert(status == CUDNN_STATUS_SUCCESS,
                      "conv fwd failed: %s; info: %s", cudnnGetErrorString(status),
                      conv_args.to_string().c_str());
    }

    handle_bias_and_nonlinear(args.handle, args.nonlinear_mode,
                              &conv_dst_tensor, args.dst_tensor,
                              args.bias_tensor);
}

// vim: syntax=cpp.doxygen