test_elemwise.py 5.5 KB
Newer Older
1 2 3
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
4
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
5 6 7 8 9 10 11
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np

import megengine.functional as F
12
import megengine.functional.elemwise as elemwise
13
from megengine import tensor
14
from megengine.core.tensor import dtype
15
from megengine.functional.elemwise import Elemwise, _elwise
16 17 18


def test_abs():
19
    np.testing.assert_allclose(
20 21 22 23
        F.abs(tensor([-3.0, -4.0, -5.0])).numpy(),
        np.abs(np.array([-3.0, -4.0, -5.0], dtype=np.float32)),
    )

24
    np.testing.assert_allclose(F.abs(-3.0).numpy(), np.abs(np.float32(-3.0)))
25 26


27
def test_elemwise_mode_string():
28 29 30 31
    for key, mode in vars(Elemwise.Mode).items():
        if isinstance(mode, Elemwise.Mode):
            assert key == mode
            assert Elemwise(mode=key) == Elemwise(mode=mode)
32 33


34
def test_multiply():
35
    np.testing.assert_allclose(
36 37
        F.mul(-3.0, -4.0).numpy(), np.multiply(np.float32(-3.0), np.float32(-4.0))
    )
38

39
    np.testing.assert_allclose(
40 41 42 43
        F.mul(tensor([3.0, 4.0]), 4.0).numpy(),
        np.multiply(np.array([3.0, 4.0], dtype=np.float32), 4.0),
    )

44
    np.testing.assert_allclose(
45 46 47 48
        F.mul(4.0, tensor([3.0, 4.0])).numpy(),
        np.multiply(4.0, np.array([3.0, 4.0], dtype=np.float32)),
    )

49
    np.testing.assert_allclose(
50 51 52 53 54 55 56 57 58 59
        F.mul(tensor([3.0, 4.0]), tensor([3.0, 4.0])).numpy(),
        np.multiply(
            np.array([3.0, 4.0], dtype=np.float32),
            np.array([3.0, 4.0], dtype=np.float32),
        ),
    )


def test_clamp():
    """Fix an issue when `lower` or `upper` is 0, it will be recognized as `False` and
60
    `F.clip` will fall into wrong conditions unexpectedly.
61 62
    """
    x = np.linspace(-6, 6, dtype="float32")
63
    np.testing.assert_allclose(
64
        F.clip(tensor(x) + 3, 0, 6).numpy(), np.clip(x + 3, 0, 6)
65 66
    )
    np.testing.assert_allclose(
67
        F.clip(tensor(x) - 3, -6, 0).numpy(), np.clip(x - 3, -6, 0)
68
    )
69 70


71 72
def test_isnan():
    for case in [[1, float("nan"), 0]]:
73
        np.testing.assert_allclose(F.isnan(tensor(case)).numpy(), np.isnan(case))
74 75 76 77


def test_isinf():
    for case in [[1, float("inf"), 0]]:
78
        np.testing.assert_allclose(F.isinf(tensor(case)).numpy(), np.isinf(case))
79 80 81 82 83


def test_sign():
    for case in [[1, -1, 0]]:
        x = tensor(case)
84
        np.testing.assert_allclose(F.sign(x).numpy(), np.sign(case).astype(x.dtype))
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150


def test_cosh():
    np.random.seed(42)
    x = np.random.randn(100).astype("float32")
    y_np = np.cosh(x)
    y_mge = F.cosh(tensor(x)).numpy()
    np.testing.assert_allclose(y_np, y_mge, rtol=1e-5)


def test_sinh():
    np.random.seed(42)
    x = np.random.randn(100).astype("float32")
    y_np = np.sinh(x)
    y_mge = F.sinh(tensor(x)).numpy()
    np.testing.assert_allclose(y_np, y_mge, rtol=1e-5)


def test_asinh():
    np.random.seed(42)
    x = np.random.randn(100).astype("float32")
    y_np = np.arcsinh(x)
    y_mge = F.asinh(tensor(x)).numpy()
    np.testing.assert_almost_equal(y_np, y_mge, decimal=5)


def test_acosh():
    x = np.arange(0, 10000).astype("float32") / 100 + 1
    y_np = np.arccosh(x)
    y_mge = F.acosh(tensor(x)).numpy()
    np.testing.assert_almost_equal(y_np, y_mge, decimal=6)


def test_atanh():
    np.random.seed(42)
    x = np.random.rand(100).astype("float32") * 2 - 1
    y_np = np.arctanh(x)
    y_mge = F.atanh(tensor(x)).numpy()
    np.testing.assert_almost_equal(y_np, y_mge, decimal=5)


def test_hswish():
    np.random.seed(42)
    x = np.random.randn(100).astype("float32")
    y_np = x * np.minimum(np.maximum(x + 3, 0), 6) / 6
    y_mge = F.hswish(tensor(x)).numpy()
    np.testing.assert_almost_equal(y_np, y_mge, decimal=6)


def test_hsigmoid():
    np.random.seed(42)
    x = np.random.randn(100).astype("float32")
    y_np = np.minimum(np.maximum(x + 3, 0), 6) / 6
    y_mge = F.hsigmoid(tensor(x)).numpy()
    np.testing.assert_equal(y_np, y_mge)


def test_logical_oprs():
    x = np.array([[True, False], [False, True]])
    y = np.array([[True, True], [False, False]])
    xx = tensor(x)
    yy = tensor(y)
    np.testing.assert_equal(~x, (F.logical_not(xx)).numpy())
    np.testing.assert_equal(x & y, F.logical_and(xx, yy).numpy())
    np.testing.assert_equal(x | y, F.logical_or(xx, yy).numpy())
    np.testing.assert_equal(x ^ y, F.logical_xor(xx, yy).numpy())
151 152 153 154 155 156 157 158 159 160


def test_qadd():
    inp_scale = 0.5
    outp_scale = 0.2
    x = np.arange(6).reshape(2, 3).astype("float32")
    y = np.arange(6).reshape(2, 3).astype("float32")
    x = tensor(x, dtype=dtype.qint8(inp_scale))
    y = tensor(y, dtype=dtype.qint8(inp_scale))
    result_mge = F.elemwise._elemwise_multi_type(
161
        x, y, mode="qadd", dtype=dtype.qint8(outp_scale)
162 163 164 165
    )
    result_mge = result_mge.astype("float32").numpy()
    result_expect = x.astype("float32").numpy() + y.astype("float32").numpy()
    np.testing.assert_almost_equal(result_mge, result_expect, decimal=6)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182


def test_int32_input():
    x = tensor(np.array([1, 2, 3, 4, 5]), dtype="int32")
    for op_name in elemwise.__all__:
        op = getattr(elemwise, op_name)
        nargs = op.__code__.co_argcount
        if op_name == "clip":
            inp = (x, 0, 1)
        elif op_name.endswith("_shift"):
            inp = (x, 1)
        elif op_name.startswith("logical_"):
            continue
        else:
            inp = (x,) * nargs
        y = op(*inp)
        y.numpy()