padding_channel.cpp 27.0 KB
Newer Older
1 2
#include "megbrain/gopt/inference.h"
#include "megbrain/opr/basic_arith.h"
3
#include "megbrain/opr/dnn/adaptive_pooling.h"
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include "megbrain/opr/dnn/convolution.h"
#include "megbrain/opr/dnn/pooling.h"
#include "megbrain/opr/imgproc.h"
#include "megbrain/opr/misc.h"
#include "megbrain/opr/nn_int.h"
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/opr/utility.h"
#include "megbrain/serialization/opr_shallow_copy.h"

#include "megdnn/opr_param_defs.h"
#include "megdnn/tensor_format.h"

#include "megbrain/opr/internal/megdnn_opr_wrapper.h"

#include "megbrain/gopt/misc.h"
#include "megbrain/utils/hash_ct.h"

#include "midout.h"

#include "megbrain/gopt/reformat_manager.h"

MIDOUT_DECL(megbrain_padding_channel)
#define MIDOUT_B(tag) \
    MIDOUT_BEGIN(megbrain_padding_channel, midout_iv(MGB_HASH_STR(tag))) {
#define MIDOUT_E \
    }            \
    MIDOUT_END();

using namespace mgb;
using namespace gopt;
using ReformatKey = ReformatManager::ReformatKey;

/* ==================== PaddingChannelPass ================= */
37
namespace {
38 39

size_t padding_int4(size_t in_channel, bool) {
40 41 42 43 44 45 46
    if (in_channel <= 32) {
        return (8 - (in_channel % 8)) % 8;
    } else {
        return (64 - (in_channel % 64)) % 64;
    }
}

47 48
//! flag is used by user to identify some case, such as in nchw64, flag is used
//! to identify the convbias and convolution backward
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
size_t padding_int8(size_t in_channel, bool flag) {
    if (flag) {
        if (in_channel <= 16) {
            return (4 - (in_channel % 4)) % 4;
        } else {
            return (32 - (in_channel % 32)) % 32;
        }
    } else {
        return (4 - (in_channel % 4)) % 4;
    }
}
size_t padding_4(size_t in_channel, bool) {
    return (4 - (in_channel % 4)) % 4;
};

64 65 66 67
size_t padding_8(size_t in_channel, bool) {
    return (8 - (in_channel % 8)) % 8;
};

68 69 70
}  // namespace

std::unique_ptr<PaddingChannelPass> PaddingChannelPass::make(
71 72
        cg::GraphCommonOptimizeOptions::LayoutTransform layout_transform,
        bool only_padding_weights) {
73 74
    MIDOUT_B("PaddingChannelPass::make")
    using LayoutTrans = cg::GraphCommonOptimizeOptions::LayoutTransform;
75 76
    auto ret = std::unique_ptr<PaddingChannelPass>(
            new PaddingChannelPass(only_padding_weights));
77 78 79 80 81 82
    auto& alignment_map = ret->m_alignment_map;
    if (layout_transform == LayoutTrans::NCHW64) {
        alignment_map[DTypeEnum::QuantizedS4] = padding_int4;
        alignment_map[DTypeEnum::Quantized4Asymm] = padding_int4;
        alignment_map[DTypeEnum::QuantizedS8] = padding_int8;
    } else if (
83
            layout_transform == LayoutTrans::NHWCD4 ||
84 85 86 87 88
            layout_transform == LayoutTrans::NCHW44 ||
            layout_transform == LayoutTrans::NCHW44_DOT) {
        alignment_map[DTypeEnum::QuantizedS8] = padding_4;
        alignment_map[DTypeEnum::Quantized8Asymm] = padding_4;
        alignment_map[DTypeEnum::Float32] = padding_4;
89 90 91 92 93 94 95 96 97 98
#if !MEGDNN_DISABLE_FLOAT16
        alignment_map[DTypeEnum::Float16] = padding_4;
#endif
    } else if (layout_transform == LayoutTrans::NCHW88) {
        alignment_map[DTypeEnum::QuantizedS8] = padding_8;
        alignment_map[DTypeEnum::Quantized8Asymm] = padding_8;
        alignment_map[DTypeEnum::Float32] = padding_8;
#if !MEGDNN_DISABLE_FLOAT16
        alignment_map[DTypeEnum::Float16] = padding_8;
#endif
99 100 101 102 103
    }
    ret->fill_opr_convert_fun(layout_transform);
    return ret;
    MIDOUT_E
}
104 105 106 107 108 109 110
const char* PaddingChannelPass::name() const {
    return mgb_cstr_log("padding output channel to multiple of 4/32");
}

void PaddingChannelPass::apply(OptState& opt) const {
    MIDOUT_B("PaddingChannelPass::apply");
    // do not check shape
M
Megvii Engine Team 已提交
111 112
    opt.set_var_replace_check_flag(
            VarReplaceCheckFlag::CHECK_ALL ^ VarReplaceCheckFlag::CHECK_SHAPE);
113
    m_padding_oprs.clear();
114
    auto rewriter = opt.graph().make_rewriter();
115 116
    auto on_opr = [this, &opt, &rewriter](OperatorNodeBase* opr) {
        auto it = m_opr_replace_funcs.find(opr->dyn_typeinfo());
117 118 119 120 121 122 123 124
        auto is_skip = false;
        //! if the input of the opr is dynamic shape, skip it
        for (size_t id = 0; id < opr->input().size(); id++) {
            if (0 == opr->input(id)->shape().ndim) {
                is_skip = true;
            }
        }
        if (it != m_opr_replace_funcs.end() && !is_skip) {
125 126 127 128
            VarNodeArray new_inp;
            new_inp.reserve(opr->input().size());
            for (auto&& inp : opr->input()) {
                new_inp.push_back(rewriter.get_var(inp));
129
            }
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
            auto new_opr = (it->second)(opr, new_inp);
            auto &&out0 = opr->output(), &&out1 = new_opr->output();
            mgb_assert(
                    out0.size() == out1.size(),
                    "bad opr replace: src=%s{%s} dst=%s{%s}, "
                    "src.size=%zu "
                    "dst.size=%zu",
                    opr->cname(), opr->dyn_typeinfo()->name, new_opr->cname(),
                    new_opr->dyn_typeinfo()->name, out0.size(), out1.size());
            for (size_t i = 0; i < out0.size(); ++i) {
                if (!out0[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) {
                    mgb_assert(!out1[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT));
                    auto src = out0[i];
                    auto dst = out1[i];
                    if (opt.graph().endpoint_contain(src) &&
                        !src->shape().eq_shape(dst->shape())) {
                        dst = extract_subtensor(dst, src->shape());
                    }
                    rewriter.replace_var(src, dst, nullptr);
                }
150 151
            }
        } else {
152
            rewriter.auto_replace_outputs(opr);
153 154
        }
    };
155 156
    opt.graph().iter(on_opr);
    rewriter.apply_inplace();
157

158 159 160 161 162 163 164 165 166 167
    MIDOUT_E
}

VarNode* PaddingChannelPass::extract_subtensor(
        VarNode* inp, const TensorShape& orig_shape) const {
    mgb_assert(inp->shape().ndim == 4);
    mgb_assert(inp->shape()[0] == orig_shape[0]);
    mgb_assert(inp->shape()[2] == orig_shape[2]);
    mgb_assert(inp->shape()[3] == orig_shape[3]);
    size_t orig_channels = orig_shape[1];
168 169 170 171
    //! if channel is not padding, do nothing
    if (orig_channels == inp->shape()[1]) {
        return inp;
    }
172 173 174 175 176 177 178 179 180 181 182 183
    auto x = SymbolVar(inp);
    auto cv = [&x](int v) { return x.make_scalar(v); };
    using AIdx = opr::Subtensor::AxisIndexer;
    auto sub = opr::Subtensor::make(
            x, {AIdx::make_interval(0, None, None, cv(1)),
                AIdx::make_interval(1, None, cv(orig_channels), None),
                AIdx::make_interval(2, None, None, cv(1)),
                AIdx::make_interval(3, None, None, cv(1))});
    return sub.node();
};

VarNode* PaddingChannelPass::pad_in_channels(VarNode* inp, size_t pad_channels) {
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    TensorShape shape;
    size_t axis = 0;
    if (inp->shape().ndim == 4) {
        shape = TensorShape{
                inp->shape()[0], pad_channels, inp->shape()[2], inp->shape()[3]};
        axis = 1;
    } else {
        mgb_assert(inp->shape().ndim == 5);
        //! the channel wise convolution
        if (inp->shape()[1] == 1 && inp->shape()[2] == 1) {
            shape = TensorShape{
                    pad_channels, inp->shape()[1], inp->shape()[2], inp->shape()[3],
                    inp->shape()[4]};
            axis = 0;
        } else {
            //! the group convolution
            mgb_assert(0, "group convolution can't padding cahnnel\n");
        }
    }
203 204 205 206 207 208 209
    std::shared_ptr<HostTensorND> host_val =
            std::make_shared<HostTensorND>(inp->comp_node(), inp->dtype());
    host_val->resize(shape);
    auto ptr = host_val->raw_ptr();
    size_t size_bytes = TensorLayout{shape, inp->dtype()}.span().dist_byte();
    std::memset(ptr, 0, size_bytes);
    auto padding = opr::ImmutableTensor::make(*inp->owner_graph(), *host_val);
210
    auto out = opr::Concat::make({inp, padding}, axis);
211 212 213 214
    return out.node();
};

VarNode* PaddingChannelPass::pad_out_channels(VarNode* inp, size_t pad_channels) {
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    TensorShape shape;
    size_t axis = 0;
    if (inp->shape().ndim == 4) {
        shape = TensorShape{
                pad_channels, inp->shape()[1], inp->shape()[2], inp->shape()[3]};
        axis = 0;
    } else {
        mgb_assert(inp->shape().ndim == 5);
        //! the channel wise convolution
        if (inp->shape()[1] == 1 && inp->shape()[2] == 1) {
            shape = TensorShape{
                    pad_channels, inp->shape()[1], inp->shape()[2], inp->shape()[3],
                    inp->shape()[4]};
            axis = 0;
        } else {
            //! the group convolution
            mgb_assert(0, "group convolution can't padding cahnnel\n");
        }
    }
234 235 236 237 238 239 240
    std::shared_ptr<HostTensorND> host_val =
            std::make_shared<HostTensorND>(inp->comp_node(), inp->dtype());
    host_val->resize(shape);
    auto ptr = host_val->raw_ptr();
    size_t size_bytes = TensorLayout{shape, inp->dtype()}.span().dist_byte();
    std::memset(ptr, 0, size_bytes);
    auto padding = opr::ImmutableTensor::make(*inp->owner_graph(), *host_val);
241
    auto out = opr::Concat::make({inp, padding}, axis);
242 243 244
    return out.node();
};

245 246
// padding policy for dense convolution
OperatorNodeBase* PaddingChannelPass::padding_conv_policy(
247 248
        OperatorNodeBase* opr, const VarNodeArray& new_inp) {
    mgb_assert(opr->input().size() == new_inp.size());
249
    mgb_assert(new_inp.size() >= 2);
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    //! new weights and old weights are same shape
    mgb_assert(opr->input(1)->shape().eq_shape(new_inp[1]->shape()));
    auto inps = new_inp;
    size_t out_channels = opr->input(1)->shape()[0];
    size_t in_channels = opr->input(1)->shape()[1];
    size_t new_in_channels = new_inp[0]->shape()[1];
    auto it = m_alignment_map.find(opr->input(0)->dtype().enumv());
    if (it != m_alignment_map.end()) {
        mgb_assert(it->second);
    } else {
        return serialization::copy_opr_shallow(*opr, inps, opr->config());
    }
    // pad input channels
    if (m_padding_oprs.count(opr->input(0)->owner_opr())) {
        //! as the opr of input var is padding, but the dtype of input and output of
        //! the input opr maybe different, so the alignment is not the same
266 267
        size_t pad_channels_0 =
                m_only_padding_weights ? 0 : it->second(new_in_channels, true);
268 269 270
        size_t pad_channels_1 = it->second(in_channels, true);
        if (pad_channels_0) {
            inps[0] = pad_in_channels(new_inp[0], pad_channels_0);
271
        } else {
272
            pad_channels_1 = new_in_channels - in_channels;
273
        }
274 275
        if (pad_channels_1) {
            inps[1] = pad_in_channels(new_inp[1], pad_channels_1);
276
        }
277 278 279
    } else {
        mgb_assert(new_in_channels == in_channels);
        size_t pad_channels = it->second(in_channels, true);
280
        if (pad_channels > 0 && !m_only_padding_weights) {
281 282
            inps[0] = pad_in_channels(new_inp[0], pad_channels);
            inps[1] = pad_in_channels(new_inp[1], pad_channels);
283
        }
284 285 286 287 288
    }
    out_channels = inps[1]->shape()[0];
    size_t pad_channels = it->second(out_channels, true);
    if (pad_channels > 0) {
        inps[1] = pad_out_channels(inps[1], pad_channels);
289 290 291
        if (inps.size() >= 3) {
            inps[2] = pad_in_channels(inps[2], pad_channels);
        }
292 293 294 295
        m_padding_oprs.insert(opr);
    }
    return serialization::copy_opr_shallow(*opr, inps, opr->config());
};
296

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
//! padding policy for channel wise convolution
OperatorNodeBase* PaddingChannelPass::padding_channel_wise_conv_policy(
        OperatorNodeBase* opr, const VarNodeArray& new_inp) {
    mgb_assert(opr->input().size() == new_inp.size());
    mgb_assert(opr->input()[1]->shape().ndim == 5);
    mgb_assert(new_inp.size() >= 2);
    //! new weights and old weights are same shape
    mgb_assert(opr->input(1)->shape().eq_shape(new_inp[1]->shape()));
    auto inps = new_inp;
    size_t group = opr->input(1)->shape()[0];
    size_t new_in_channels = new_inp[0]->shape()[1];
    auto it = m_alignment_map.find(opr->input(0)->dtype().enumv());
    if (it != m_alignment_map.end()) {
        mgb_assert(it->second);
    } else {
        return serialization::copy_opr_shallow(*opr, inps, opr->config());
    }
    // pad input channels
    if (m_padding_oprs.count(opr->input(0)->owner_opr())) {
        size_t pad_channels_1 = new_in_channels - group;
        if (pad_channels_1) {
            inps[1] = pad_in_channels(new_inp[1], pad_channels_1);
319 320 321
            if (inps.size() >= 3) {
                inps[2] = pad_in_channels(new_inp[2], pad_channels_1);
            }
322 323 324 325 326 327
            m_padding_oprs.insert(opr);
        }
    }
    return serialization::copy_opr_shallow(*opr, inps, opr->config());
};

328
void PaddingChannelPass::fill_opr_convert_fun(LayoutTrans layout_trans) {
329
    add_conv_replace_func(layout_trans);
330 331 332
    add_conv_backward_data_replace_func(layout_trans);
    add_format_aware_opr_replace_func(layout_trans);
    add_elemwise_like_opr_replace_func(layout_trans);
333
    add_condition_padding_oprs_replace_func(layout_trans);
334 335 336
    add_nonpadding_oprs_replace_func(layout_trans);
}

337
void PaddingChannelPass::add_conv_replace_func(LayoutTrans layout_trans) {
338 339 340
    if (layout_trans == LayoutTrans::NCHW64) {
        m_opr_replace_funcs[opr::ConvBiasForward::typeinfo()] =
                [this](OperatorNodeBase* opr, const VarNodeArray& new_inp) {
341 342 343 344 345 346 347 348
                    mgb_assert(
                            opr->input()[1]->shape().ndim == 4,
                            "nchw64 format only support padding channel in dense "
                            "convolution\n");
                    if (opr->input(0)->dtype().enumv() == DTypeEnum::QuantizedS8 ||
                        opr->input(0)->dtype().enumv() == DTypeEnum::QuantizedS4 ||
                        opr->input(0)->dtype().enumv() == DTypeEnum::Quantized4Asymm) {
                        return padding_conv_policy(opr, new_inp);
349 350 351 352 353 354 355 356 357 358 359 360
                    } else {
                        mgb_assert(
                                m_padding_oprs.count(opr->input(0)->owner_opr()) == 0,
                                "conv bias operator for data type(%s) cannot be "
                                "padded channel. "
                                "consumer(%s), producer(%s)",
                                opr->input(0)->dtype().name(), opr->cname(),
                                opr->input(0)->owner_opr()->cname());
                        return serialization::copy_opr_shallow(
                                *opr, new_inp, opr->config());
                    }
                };
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    } else if (
            layout_trans == LayoutTrans::NCHW44 ||
            layout_trans == LayoutTrans::NCHW44_DOT ||
            layout_trans == LayoutTrans::NCHW88) {
        auto padding_conv = [this](OperatorNodeBase* opr, const VarNodeArray& new_inp) {
            if (opr->input()[1]->shape().ndim == 4) {
                return padding_conv_policy(opr, new_inp);
            } else {
                mgb_assert(opr->input()[1]->shape().ndim == 5);
                if (opr->input()[1]->shape()[1] == 1 &&
                    opr->input()[1]->shape()[2] == 1) {
                    return padding_channel_wise_conv_policy(opr, new_inp);
                } else {
                    //! group convolution can't padding channel
                    mgb_assert(opr->input().size() == new_inp.size());
                    auto inps = new_inp;
                    for (size_t i = 0; i < new_inp.size(); ++i) {
                        auto cur_inp = opr->input(i);
                        bool padding_cur_inp =
                                m_padding_oprs.count(cur_inp->owner_opr()) > 0;
                        if (padding_cur_inp) {
                            inps[i] = extract_subtensor(inps[i], cur_inp->shape());
                        }
                    }
                    return serialization::copy_opr_shallow(*opr, inps, opr->config());
                }
            }
        };
        m_opr_replace_funcs[opr::ConvBiasForward::typeinfo()] = padding_conv;
        m_opr_replace_funcs[opr::Convolution::typeinfo()] = padding_conv;
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
    }
}

void PaddingChannelPass::add_conv_backward_data_replace_func(LayoutTrans layout_trans) {
    if (layout_trans == LayoutTrans::NCHW64) {
        m_opr_replace_funcs[opr::ConvolutionBackwardData::typeinfo()] =
                [this](OperatorNodeBase* opr, const VarNodeArray& new_inp) {
                    if (opr->input(1)->dtype().enumv() != DTypeEnum::QuantizedS8) {
                        mgb_assert(
                                m_padding_oprs.count(opr->input(0)->owner_opr()) == 0,
                                "conv bwd data operator for data type(%s) cannot "
                                "be "
                                "padded channel. "
                                "consumer(%s), producer(%s)",
                                opr->input(0)->dtype().name(), opr->cname(),
                                opr->input(0)->owner_opr()->cname());
                        return serialization::copy_opr_shallow(
                                *opr, new_inp, opr->config());
                    }
                    mgb_assert(opr->input().size() == new_inp.size());
411
                    mgb_assert(
412 413 414 415 416 417 418 419 420 421 422 423 424
                            new_inp.size() == 2,
                            "deconv (conv bwd data) operator for inference can "
                            "only have 2 input vars(got:%zu)",
                            new_inp.size());
                    mgb_assert(opr->input(0)->shape().eq_shape(new_inp[0]->shape()));
                    auto inps = new_inp;
                    size_t out_channels = opr->input(0)->shape()[0];
                    size_t in_channels = opr->input(0)->shape()[1];
                    size_t new_out_channels = new_inp[1]->shape()[1];
                    auto it = m_alignment_map.find(opr->input(1)->dtype().enumv());
                    // pad output channels
                    if (m_padding_oprs.count(opr->input(1)->owner_opr())) {
                        size_t pad_channels = new_out_channels - out_channels;
425
                        inps[0] = pad_out_channels(new_inp[0], pad_channels);
426
                    } else {
427 428 429
                        size_t pad_channels = m_only_padding_weights
                                                    ? 0
                                                    : it->second(out_channels, false);
430 431 432 433
                        if (pad_channels > 0) {
                            inps[0] = pad_out_channels(new_inp[0], pad_channels);
                            inps[1] = pad_in_channels(new_inp[1], pad_channels);
                        }
434
                    }
435 436 437 438 439 440 441
                    out_channels = inps[0]->shape()[0];
                    // pad input channels
                    size_t pad_channels = it->second(in_channels, false);
                    if (pad_channels > 0) {
                        inps[0] = pad_in_channels(inps[0], pad_channels);
                        m_padding_oprs.insert(opr);
                    }
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
                    return serialization::copy_opr_shallow(*opr, inps, opr->config());
                };
    } else {
        m_opr_replace_funcs[opr::ConvolutionBackwardData::typeinfo()] =
                [this](OperatorNodeBase* opr, const VarNodeArray& new_inp) {
                    mgb_assert(opr->input(0)->shape().eq_shape(new_inp[0]->shape()));
                    auto inps = new_inp;
                    size_t out_channels = opr->input(0)->shape()[0];
                    size_t new_out_channels = new_inp[1]->shape()[1];
                    // pad output channels
                    if (m_padding_oprs.count(opr->input(1)->owner_opr())) {
                        size_t pad_channels = new_out_channels - out_channels;
                        inps[0] = pad_out_channels(new_inp[0], pad_channels);
                    }
                    out_channels = inps[0]->shape()[0];

458 459 460 461 462
                    return serialization::copy_opr_shallow(*opr, inps, opr->config());
                };
    }
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
void PaddingChannelPass::add_format_aware_opr_replace_func(LayoutTrans layout_trans) {
    auto replace_format_aware_opr = [this, layout_trans](
                                            OperatorNodeBase* opr,
                                            const VarNodeArray& new_inp) {
        if (layout_trans == LayoutTrans::NCHW64) {
            if (opr->input(0)->dtype().enumv() != DTypeEnum::QuantizedS8 &&
                opr->input(0)->dtype().enumv() != DTypeEnum::QuantizedS4 &&
                opr->input(0)->dtype().enumv() != DTypeEnum::Quantized4Asymm) {
                mgb_assert(
                        m_padding_oprs.count(opr->input(0)->owner_opr()) == 0,
                        "operator(type:%s,name:%s) for data type(%s) cannot be "
                        "padded channel. extra info:"
                        "consumer(%s), producer(%s)",
                        opr->dyn_typeinfo()->name, opr->cname(),
                        opr->input(0)->dtype().name(), opr->cname(),
                        opr->input(0)->owner_opr()->cname());
                return serialization::copy_opr_shallow(*opr, new_inp, opr->config());
            }
481 482
        }
        mgb_assert(opr->input().size() == new_inp.size());
483 484
        if (m_padding_oprs.count(opr->input(0)->owner_opr())) {
            m_padding_oprs.insert(opr);
485 486 487
        }
        return serialization::copy_opr_shallow(*opr, new_inp, opr->config());
    };
488 489
    m_opr_replace_funcs[opr::PoolingForward::typeinfo()] = replace_format_aware_opr;
    m_opr_replace_funcs[opr::WarpPerspectiveForward::typeinfo()] =
490
            replace_format_aware_opr;
491 492 493
    m_opr_replace_funcs[opr::WarpAffine::typeinfo()] = replace_format_aware_opr;
    m_opr_replace_funcs[opr::AdaptivePooling::typeinfo()] = replace_format_aware_opr;
    m_opr_replace_funcs[opr::ResizeForward::typeinfo()] = replace_format_aware_opr;
494
}
495

496 497 498
void PaddingChannelPass::add_elemwise_like_opr_replace_func(LayoutTrans) {
    auto replace_elemwise_like_opr = [this](OperatorNodeBase* opr,
                                            const VarNodeArray& new_inp) {
499 500 501 502 503 504 505
        mgb_assert(opr->input().size() == new_inp.size());
        bool have_padding_inp = false;
        bool padding_all_inps = true;
        bool same_padding = true;
        size_t channels_after_padding = 0;
        size_t i = 0;
        for (auto&& cur_inp : opr->input()) {
506 507 508 509
            if (cur_inp->shape().is_scalar()) {
                ++i;
                continue;
            }
510
            bool padding_cur_inp = m_padding_oprs.count(cur_inp->owner_opr()) > 0;
511 512 513 514 515 516
            if (padding_cur_inp) {
                if (!have_padding_inp)
                    have_padding_inp = true;
                if (channels_after_padding == 0) {
                    channels_after_padding = new_inp[i]->shape()[1];
                } else {
M
Megvii Engine Team 已提交
517
                    same_padding = channels_after_padding == new_inp[i]->shape()[1];
518 519
                }
            }
520
            if (padding_all_inps && (!padding_cur_inp || !same_padding)) {
521
                padding_all_inps = false;
522
            }
523 524 525 526 527 528
            ++i;
        }
        if (have_padding_inp && !padding_all_inps) {
            auto inps = new_inp;
            for (size_t i = 0; i < new_inp.size(); ++i) {
                auto cur_inp = opr->input(i);
529
                bool padding_cur_inp = m_padding_oprs.count(cur_inp->owner_opr()) > 0;
530 531 532 533 534 535
                if (padding_cur_inp) {
                    inps[i] = extract_subtensor(inps[i], cur_inp->shape());
                }
            }
            return serialization::copy_opr_shallow(*opr, inps, opr->config());
        }
536
        if (padding_all_inps && have_padding_inp) {
537
            m_padding_oprs.insert(opr);
538 539 540
        }
        return serialization::copy_opr_shallow(*opr, new_inp, opr->config());
    };
541 542 543
    m_opr_replace_funcs[opr::ElemwiseMultiType::typeinfo()] = replace_elemwise_like_opr;
    m_opr_replace_funcs[opr::Elemwise::typeinfo()] = replace_elemwise_like_opr;
    m_opr_replace_funcs[opr::TypeCvt::typeinfo()] = replace_elemwise_like_opr;
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
    m_opr_replace_funcs[opr::PowC::typeinfo()] = replace_elemwise_like_opr;
}

void PaddingChannelPass::add_condition_padding_oprs_replace_func(LayoutTrans) {
    auto replace_condition_oprs = [this](OperatorNodeBase* opr,
                                         const VarNodeArray& new_inp) {
        mgb_assert(opr->input().size() == new_inp.size());
        bool can_forward_padding = true;
        if (auto reduce = opr->try_cast_final<opr::Reduce>()) {
            auto axis = reduce->param().axis;
            if (axis < 0) {
                axis += reduce->input(0)->layout().ndim;
            }
            //! don't reduce in channel
            if (reduce->input().size() > 1) {
                can_forward_padding = false;
            } else {
                can_forward_padding = reduce->param().axis != 1;
            }
        } else if (auto subtensor = opr->try_cast_final<opr::Subtensor>()) {
            auto indexs = subtensor->index_desc();
            size_t input_dim = subtensor->input(0)->shape().ndim;
            for (size_t id = 0; id < indexs.size(); id++) {
                if (indexs[id].axis.get(input_dim) == 1) {
                    //! when subtensor perform on channel dim, if is idx mode or
                    //! end is valid, it can forward without add subtensor
                    can_forward_padding &=
                            indexs[id].idx.node() || indexs[id].end.node();
                }
            }
        }
        auto inps = new_inp;
        for (size_t i = 0; i < new_inp.size(); ++i) {
            auto cur_inp = opr->input(i);
            bool padding_cur_inp = m_padding_oprs.count(cur_inp->owner_opr()) > 0;
            if (padding_cur_inp) {
                if (can_forward_padding) {
                    m_padding_oprs.insert(opr);
                } else {
                    inps[i] = extract_subtensor(inps[i], cur_inp->shape());
                }
            }
        }
        return serialization::copy_opr_shallow(*opr, inps, opr->config());
    };
    m_opr_replace_funcs[opr::Reduce::typeinfo()] = replace_condition_oprs;
    m_opr_replace_funcs[opr::Subtensor::typeinfo()] = replace_condition_oprs;
591
}
592

593 594 595
void PaddingChannelPass::add_nonpadding_oprs_replace_func(LayoutTrans) {
    auto replace_nonpadding_oprs = [this](OperatorNodeBase* opr,
                                          const VarNodeArray& new_inp) {
596 597 598 599
        mgb_assert(opr->input().size() == new_inp.size());
        auto inps = new_inp;
        for (size_t i = 0; i < new_inp.size(); ++i) {
            auto cur_inp = opr->input(i);
600
            bool padding_cur_inp = m_padding_oprs.count(cur_inp->owner_opr()) > 0;
601 602 603 604 605 606
            if (padding_cur_inp) {
                inps[i] = extract_subtensor(inps[i], cur_inp->shape());
            }
        }
        return serialization::copy_opr_shallow(*opr, inps, opr->config());
    };
607 608 609
    m_opr_replace_funcs[opr::Reshape::typeinfo()] = replace_nonpadding_oprs;
    m_opr_replace_funcs[opr::GetVarShape::typeinfo()] = replace_nonpadding_oprs;
    m_opr_replace_funcs[opr::Concat::typeinfo()] = replace_nonpadding_oprs;
610 611 612 613 614
    m_opr_replace_funcs[opr::Dimshuffle::typeinfo()] = replace_nonpadding_oprs;
    m_opr_replace_funcs[opr::Argmax::typeinfo()] = replace_nonpadding_oprs;
    m_opr_replace_funcs[opr::Argmin::typeinfo()] = replace_nonpadding_oprs;
    m_opr_replace_funcs[opr::IncrSubtensor::typeinfo()] = replace_nonpadding_oprs;
    m_opr_replace_funcs[opr::AssertEqual::typeinfo()] = replace_nonpadding_oprs;
615 616 617
}

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}