function_dft.h 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

/**
 * \file src/mge/function_dft.h
 *
 * This file is part of MegEngine, a deep learning framework developed by
 * Megvii.
 *
 * \copyright Copyright (c) 2020-2021 Megvii Inc. All rights reserved.
 */

#pragma once
#if LITE_BUILD_WITH_MGE
#include "function_base.h"
#include "network_impl.h"
#include "network_impl_base.h"
#include "tensor_impl.h"
namespace lite {

#define THROW_FUNC_ERROR(func_name)                                   \
    auto msg_info = func_name + "  is not aviliable in Dft backend."; \
    LITE_THROW(msg_info.c_str())

// the functions used for dft's tensor.cpp are as followed:

template <>
inline std::shared_ptr<Tensor::TensorImplBase>
call_func<TensorImplDft, std::shared_ptr<Tensor::TensorImplBase>>(
        std::string func_name) {
    if (func_name == "create_tensor") {
        return std::make_shared<TensorImplDft>();
    }
    THROW_FUNC_ERROR(func_name);
}

template <>
inline std::shared_ptr<Tensor::TensorImplBase>
call_func<TensorImplDft, std::shared_ptr<Tensor::TensorImplBase>>(
        std::string func_name, LiteDeviceType device_type,
        bool is_pinned_host) {
    if (func_name == "create_tensor") {
        return std::make_shared<TensorImplDft>(device_type, is_pinned_host);
    }
    THROW_FUNC_ERROR(func_name);
}

template <>
inline std::shared_ptr<Tensor::TensorImplBase>
call_func<TensorImplDft, std::shared_ptr<Tensor::TensorImplBase>>(
        std::string func_name, int device_id, LiteDeviceType device_type,
        const Layout layout, bool is_pinned_host) {
    if (func_name == "create_tensor") {
        return std::make_shared<TensorImplDft>(device_id, device_type, layout,
                                               is_pinned_host);
    }
    THROW_FUNC_ERROR(func_name);
}

template <>
inline std::shared_ptr<Tensor::TensorImplBase>
call_func<TensorImplDft, std::shared_ptr<Tensor::TensorImplBase>>(
        std::string func_name, LiteDeviceType device_type, const Layout layout,
        bool is_pinned_host) {
    if (func_name == "create_tensor") {
        return std::make_shared<TensorImplDft>(device_type, layout,
                                               is_pinned_host);
    }
    THROW_FUNC_ERROR(func_name);
}

template <>
inline std::shared_ptr<Tensor::TensorImplBase>
call_func<TensorImplDft, std::shared_ptr<Tensor::TensorImplBase>>(
        std::string func_name, int device_id, int stream_id,
        LiteDeviceType device_type, bool is_pinned_host) {
    if (func_name == "create_tensor") {
        return std::make_shared<TensorImplDft>(device_id, stream_id,
                                               device_type, is_pinned_host);
    }
    THROW_FUNC_ERROR(func_name);
}

// the functions used for dft's network.cpp are as followed:

template <>
inline std::unique_ptr<Network::NetworkImplBase>
call_func<NetworkImplDft, std::unique_ptr<Network::NetworkImplBase>>(
        std::string func_name) {
    if (func_name == "create_network") {
        return std::make_unique<NetworkImplDft>();
    }
    THROW_FUNC_ERROR(func_name);
}

template <>
inline Network::NetworkImplBase*
try_call_func<NetworkImplDft, Network::NetworkImplBase*>(
        std::string func_name) {
    if (func_name == "parse_model") {
        return new NetworkImplDft();
    }
    THROW_FUNC_ERROR(func_name);
}

#define CALL_FUNC(func_name, ...) \
    network_impl->cast_final_safe<NetworkImplDft>().func_name(__VA_ARGS__)

template <>
inline void call_func<NetworkImplDft, void>(
        std::string func_name, Network::NetworkImplBase* network_impl,
        size_t num) {
    if (func_name == "set_cpu_threads_number") {
        CALL_FUNC(set_cpu_threads_number, num);
    } else if (func_name == "set_network_algo_workspace_limit") {
        CALL_FUNC(set_network_algo_workspace_limit, num);
    } else {
        THROW_FUNC_ERROR(func_name);
    }
}

template <>
inline void call_func<NetworkImplDft, void>(
        std::string func_name, Network::NetworkImplBase* network_impl) {
    if (func_name == "use_tensorrt") {
        CALL_FUNC(use_tensorrt);
    } else if (func_name == "set_cpu_inplace_mode") {
        CALL_FUNC(set_cpu_inplace_mode);
    } else {
        THROW_FUNC_ERROR(func_name);
    }
}

template <>
inline size_t call_func<NetworkImplDft, size_t>(
        std::string func_name, Network::NetworkImplBase* network_impl) {
    if (func_name == "get_cpu_threads_number") {
        return CALL_FUNC(get_cpu_threads_number);
    }
    THROW_FUNC_ERROR(func_name);
}

template <>
inline bool call_func<NetworkImplDft, bool>(
        std::string func_name, Network::NetworkImplBase* network_impl) {
    if (func_name == "is_cpu_inplace_mode") {
        return CALL_FUNC(is_cpu_inplace_mode);
    }
    THROW_FUNC_ERROR(func_name);
}

template <>
inline void call_func<NetworkImplDft, void>(
        std::string func_name, Network::NetworkImplBase* network_impl,
        ThreadAffinityCallback thread_affinity_callback) {
    if (func_name == "set_runtime_thread_affinity") {
        return CALL_FUNC(set_runtime_thread_affinity,
                         std::move(thread_affinity_callback));
    }
    THROW_FUNC_ERROR(func_name);
}

template <>
inline void call_func<NetworkImplDft, void>(
        std::string func_name, Network::NetworkImplBase* network_impl,
        LiteAlgoSelectStrategy strategy, uint32_t shared_batch_size,
        bool binary_equal_between_batch) {
    if (func_name == "set_network_algo_policy") {
        return CALL_FUNC(set_network_algo_policy, strategy, shared_batch_size,
                         binary_equal_between_batch);
    }
    THROW_FUNC_ERROR(func_name);
}

template <>
inline void call_func<NetworkImplDft, void>(
        std::string func_name, Network::NetworkImplBase* network_impl,
        std::shared_ptr<Allocator> user_allocator) {
    if (func_name == "set_memory_allocator") {
        return CALL_FUNC(set_memory_allocator, user_allocator);
    }
    THROW_FUNC_ERROR(func_name);
}

template <>
inline void call_func<NetworkImplDft, void>(
        std::string func_name, Network::NetworkImplBase* network_impl,
        std::string file_name) {
    if (func_name == "enable_io_txt_dump") {
        return CALL_FUNC(enable_io_txt_dump, file_name);
    } else if (func_name == "enable_io_bin_dump") {
        return CALL_FUNC(enable_io_bin_dump, file_name);
    }
    THROW_FUNC_ERROR(func_name);
}

template <>
inline void call_func<NetworkImplDft, void>(
        std::string func_name, Network::NetworkImplBase* network_impl,
        Network::NetworkImplBase* src_network_impl) {
    if (func_name == "share_runtime_memory_with") {
        CALL_FUNC(share_runtime_memory_with, src_network_impl);
    } else if (func_name == "shared_weight_with") {
        CALL_FUNC(shared_weight_with, src_network_impl);
    } else {
        THROW_FUNC_ERROR(func_name);
    }
}
#undef THROW_FUNC_ERROR

}  // namespace lite
#endif

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}