lite_c_interface.cpp 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
/**
 * \file example/basic_c_interface.cpp
 *
 * This file is part of MegEngine, a deep learning framework developed by
 * Megvii.
 *
 * \copyright Copyright (c) 2020-2021 Megvii Inc. All rights reserved.
 */

#include "../example.h"
#include "misc.h"
#if LITE_BUILD_WITH_MGE
#include "lite-c/global_c.h"
#include "lite-c/network_c.h"
#include "lite-c/tensor_c.h"

#include <thread>

#define LITE_CAPI_CHECK(_expr)                 \
    do {                                       \
        int _ret = (_expr);                    \
        if (_ret) {                            \
            LITE_THROW(LITE_get_last_error()); \
        }                                      \
    } while (0)

bool basic_c_interface(const lite::example::Args& args) {
    std::string network_path = args.model_path;
    std::string input_path = args.input_path;

    //! read input data to lite::tensor
    auto src_tensor = lite::example::parse_npy(input_path);
    void* src_ptr = src_tensor->get_memory_ptr();

    //! create and load the network
    LiteNetwork c_network;
    LITE_CAPI_CHECK(
            LITE_make_network(&c_network, *default_config(), *default_network_io()));

    LITE_CAPI_CHECK(LITE_load_model_from_path(c_network, network_path.c_str()));

    //! set input data to input tensor
    LiteTensor c_input_tensor;
    LITE_CAPI_CHECK(
            LITE_get_io_tensor(c_network, "data", LITE_IO, &c_input_tensor));
    void* dst_ptr;
    size_t length_in_byte;
    LITE_CAPI_CHECK(LITE_get_tensor_total_size_in_byte(c_input_tensor,
                                                       &length_in_byte));
    LITE_CAPI_CHECK(LITE_get_tensor_memory(c_input_tensor, &dst_ptr));
    //! copy or forward data to network
    memcpy(dst_ptr, src_ptr, length_in_byte);

    //! forward
    LITE_CAPI_CHECK(LITE_forward(c_network));
    LITE_CAPI_CHECK(LITE_wait(c_network));

    //! get the output data or read tensor data
    const char* output_name;
    LiteTensor c_output_tensor;
    //! get the first output tensor name
    LITE_CAPI_CHECK(LITE_get_output_name(c_network, 0, &output_name));
    LITE_CAPI_CHECK(LITE_get_io_tensor(c_network, output_name, LITE_IO,
                                       &c_output_tensor));
    void* output_ptr;
    size_t length_output_in_byte;
    LITE_CAPI_CHECK(LITE_get_tensor_memory(c_output_tensor, &output_ptr));
    LITE_CAPI_CHECK(LITE_get_tensor_total_size_in_byte(c_output_tensor,
                                                       &length_output_in_byte));

    size_t out_length = length_output_in_byte / sizeof(float);
    printf("length=%zu\n", out_length);

    float max = -1.0f;
    float sum = 0.0f;
    for (size_t i = 0; i < out_length; i++) {
        float data = static_cast<float*>(output_ptr)[i];
        sum += data;
        if (max < data)
            max = data;
    }
    printf("max=%e, sum=%e\n", max, sum);
    return true;
}

bool device_io_c_interface(const lite::example::Args& args) {
    std::string network_path = args.model_path;
    std::string input_path = args.input_path;

    //! read input data to lite::tensor
    auto src_tensor = lite::example::parse_npy(input_path);
    void* src_ptr = src_tensor->get_memory_ptr();
    size_t length_read_in = src_tensor->get_tensor_total_size_in_byte();

    //! create and load the network
    LiteNetwork c_network;
    LITE_CAPI_CHECK(
            LITE_make_network(&c_network, *default_config(), *default_network_io()));
    LITE_CAPI_CHECK(LITE_load_model_from_path(c_network, network_path.c_str()));

    //! set input data to input tensor
    LiteTensor c_input_tensor;
    size_t length_tensor_in;
    LITE_CAPI_CHECK(
            LITE_get_io_tensor(c_network, "data", LITE_IO, &c_input_tensor));
    LITE_CAPI_CHECK(LITE_get_tensor_total_size_in_byte(c_input_tensor,
                                                       &length_tensor_in));
    if (length_read_in != length_tensor_in) {
        LITE_THROW("The input data size is not match the network input tensro "
               "size,\n");
    }
    LITE_CAPI_CHECK(LITE_reset_tensor_memory(c_input_tensor, src_ptr,
                                             length_tensor_in));

    //! reset the output tensor memory with user allocated memory
    size_t out_length = 1000;
    LiteLayout output_layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT};
    std::shared_ptr<float> ptr(new float[out_length],
                               [](float* ptr) { delete[] ptr; });
    const char* output_name;
    LiteTensor c_output_tensor;
    LITE_CAPI_CHECK(LITE_get_output_name(c_network, 0, &output_name));
    LITE_CAPI_CHECK(LITE_get_io_tensor(c_network, output_name, LITE_IO,
                                       &c_output_tensor));
    LITE_CAPI_CHECK(
            LITE_reset_tensor(c_output_tensor, output_layout, ptr.get()));

    //! forward
    LITE_CAPI_CHECK(LITE_forward(c_network));
    LITE_CAPI_CHECK(LITE_wait(c_network));

    printf("length=%zu\n", out_length);

    float max = -1.0f;
    float sum = 0.0f;
    void* out_data = ptr.get();
    for (size_t i = 0; i < out_length; i++) {
        float data = static_cast<float*>(out_data)[i];
        sum += data;
        if (max < data)
            max = data;
    }
    printf("max=%e, sum=%e\n", max, sum);
    return true;
}

namespace {
volatile bool finished = false;
int async_callback(void) {
#if !__DEPLOY_ON_XP_SP2__
    std::cout << "worker thread_id:" << std::this_thread::get_id() << std::endl;
#endif
    finished = true;
    return 0;
}
}  // namespace

bool async_c_interface(const lite::example::Args& args) {
    std::string network_path = args.model_path;
    std::string input_path = args.input_path;

    //! read input data to lite::tensor
    auto src_tensor = lite::example::parse_npy(input_path);
    void* src_ptr = src_tensor->get_memory_ptr();

    LiteNetwork c_network;
    LiteConfig config = *default_config();
    config.options.var_sanity_check_first_run = false;
    LITE_CAPI_CHECK(LITE_make_network(&c_network, config, *default_network_io()));
    LITE_CAPI_CHECK(LITE_load_model_from_path(c_network, network_path.c_str()));

    //! set input data to input tensor
    LiteTensor c_input_tensor;
    size_t length_tensor_in;
    LITE_CAPI_CHECK(
            LITE_get_io_tensor(c_network, "data", LITE_IO, &c_input_tensor));
    LITE_CAPI_CHECK(LITE_get_tensor_total_size_in_byte(c_input_tensor,
                                                       &length_tensor_in));
    LITE_CAPI_CHECK(LITE_reset_tensor_memory(c_input_tensor, src_ptr,
                                             length_tensor_in));

#if !__DEPLOY_ON_XP_SP2__
    std::cout << "user thread_id:" << std::this_thread::get_id() << std::endl;
#endif

    LITE_CAPI_CHECK(LITE_set_async_callback(c_network, async_callback));
    //! forward
    LITE_CAPI_CHECK(LITE_forward(c_network));
    size_t count = 0;
    while (finished == false) {
        count++;
    }
    printf("The count is %zu\n", count);
    finished = false;

    //! get the output data or read tensor data
    const char* output_name;
    LiteTensor c_output_tensor;
    //! get the first output tensor name
    LITE_CAPI_CHECK(LITE_get_output_name(c_network, 0, &output_name));
    LITE_CAPI_CHECK(LITE_get_io_tensor(c_network, output_name, LITE_IO,
                                       &c_output_tensor));
    void* output_ptr;
    size_t length_output_in_byte;
    LITE_CAPI_CHECK(LITE_get_tensor_memory(c_output_tensor, &output_ptr));
    LITE_CAPI_CHECK(LITE_get_tensor_total_size_in_byte(c_output_tensor,
                                                       &length_output_in_byte));

    size_t out_length = length_output_in_byte / sizeof(float);
    printf("length=%zu\n", out_length);

    float max = -1.0f;
    float sum = 0.0f;
    for (size_t i = 0; i < out_length; i++) {
        float data = static_cast<float*>(output_ptr)[i];
        sum += data;
        if (max < data)
            max = data;
    }
    printf("max=%e, sum=%e\n", max, sum);
    return true;
}
#endif
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}