main.cpp 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/**
 * \file example/example.cpp
 *
 * This file is part of MegEngine, a deep learning framework developed by
 * Megvii.
 *
 * \copyright Copyright (c) 2020-2021 Megvii Inc. All rights reserved.
 */

#include "lite/global.h"
#include "lite/network.h"
#include "lite/tensor.h"

#include "example.h"
#include "npy.h"

#include <string.h>
#include <map>
#include <memory>
#include <vector>

using namespace lite;
using namespace example;

Args Args::from_argv(int argc, char** argv) {
    Args ret;
    if (argc < 4) {
        printf("usage: lite_examples <example_name> <model file> <input "
               "file> <output file>.\n");
        printf("*********The output file is optional.*************\n");
        printf("The registered examples include:\n");
        size_t index = 0;
        for (auto it : *get_example_function_map()) {
            printf("%zu : %s\n", index, it.first.c_str());
            index++;
        }
        ret.args_parse_ret = -1;
        return ret;
    }
    ret.example_name = argv[1];
    ret.model_path = argv[2];
    ret.input_path = argv[3];
    if (argc > 4) {
        ret.output_path = argv[4];
    }
    if (argc > 5) {
        ret.loader_path = argv[5];
    }
    return ret;
}

ExampleFuncMap* lite::example::get_example_function_map() {
    static ExampleFuncMap static_map;
    return &static_map;
}

bool lite::example::register_example(std::string example_name,
                                     const ExampleFunc& fuction) {
    auto map = get_example_function_map();
    if (map->find(example_name) != map->end()) {
        printf("Error!!! This example is registed yet\n");
        return false;
    }
    (*map)[example_name] = fuction;
    return true;
}

std::shared_ptr<Tensor> lite::example::parse_npy(const std::string& path,
                                                 LiteBackend backend) {
    std::string type_str;
    std::vector<npy::ndarray_len_t> stl_shape;
    std::vector<int8_t> raw;
    npy::LoadArrayFromNumpy(path, type_str, stl_shape, raw);

    auto lite_tensor =
            std::make_shared<Tensor>(backend, LiteDeviceType::LITE_CPU);
    Layout layout;
    layout.ndim = stl_shape.size();
    const std::map<std::string, LiteDataType> type_map = {
            {"f4", LiteDataType::LITE_FLOAT},
            {"i4", LiteDataType::LITE_INT},
            {"i1", LiteDataType::LITE_INT8},
            {"u1", LiteDataType::LITE_UINT8}};
    layout.shapes[0] = 1;
    for (size_t i = 0; i < layout.ndim; i++) {
        layout.shapes[i] = static_cast<size_t>(stl_shape[i]);
    }

    for (auto& item : type_map) {
        if (type_str.find(item.first) != std::string::npos) {
            layout.data_type = item.second;
            break;
        }
    }
    lite_tensor->set_layout(layout);
    size_t length = lite_tensor->get_tensor_total_size_in_byte();
    void* dest = lite_tensor->get_memory_ptr();
    memcpy(dest, raw.data(), length);
    //! rknn not support reshape now
    if (layout.ndim == 3) {
            lite_tensor->reshape({1, static_cast<int>(layout.shapes[0]),
                                  static_cast<int>(layout.shapes[1]),
                                  static_cast<int>(layout.shapes[2])});
    }
    return lite_tensor;
}

void lite::example::set_cpu_affinity(const std::vector<int>& cpuset) {
#if defined(__APPLE__) || defined(WIN32)
#pragma message("set_cpu_affinity not enabled on apple and windows platform")
#else
    cpu_set_t mask;
    CPU_ZERO(&mask);
    for (auto i : cpuset) {
        CPU_SET(i, &mask);
    }
    auto err = sched_setaffinity(0, sizeof(mask), &mask);
    if (err) {
        printf("failed to sched_setaffinity: %s (error ignored)",
               strerror(errno));
    }
#endif
}

int main(int argc, char** argv) {
    set_log_level(LiteLogLevel::WARN);
    auto&& args = Args::from_argv(argc, argv);
    if (args.args_parse_ret)
        return -1;
    auto map = get_example_function_map();
    auto example = (*map)[args.example_name];
    if (example) {
        printf("Begin to run %s example.\n", args.example_name.c_str());
        return example(args);
    } else {
        printf("The example of %s is not registed.", args.example_name.c_str());
        return -1;
    }
}
namespace lite {
namespace example {

#if LITE_BUILD_WITH_MGE
#if LITE_WITH_CUDA
REGIST_EXAMPLE("load_from_path_run_cuda", load_from_path_run_cuda);
#endif
REGIST_EXAMPLE("basic_load_from_path", basic_load_from_path);
REGIST_EXAMPLE("basic_load_from_path_with_loader", basic_load_from_path_with_loader);
REGIST_EXAMPLE("basic_load_from_memory", basic_load_from_memory);
REGIST_EXAMPLE("cpu_affinity", cpu_affinity);
REGIST_EXAMPLE("register_cryption_method", register_cryption_method);
REGIST_EXAMPLE("update_cryption_key", update_cryption_key);
REGIST_EXAMPLE("network_share_same_weights", network_share_same_weights);
REGIST_EXAMPLE("reset_input", reset_input);
REGIST_EXAMPLE("reset_input_output", reset_input_output);
REGIST_EXAMPLE("config_user_allocator", config_user_allocator);
REGIST_EXAMPLE("async_forward", async_forward);

REGIST_EXAMPLE("basic_c_interface", basic_c_interface);
REGIST_EXAMPLE("device_io_c_interface", device_io_c_interface);
REGIST_EXAMPLE("async_c_interface", async_c_interface);

#if LITE_WITH_CUDA
REGIST_EXAMPLE("device_input", device_input);
REGIST_EXAMPLE("device_input_output", device_input_output);
REGIST_EXAMPLE("pinned_host_input", pinned_host_input);
#endif
#endif
}  // namespace example
}  // namespace lite

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}