test_elemwise.py 4.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np

import megengine.functional as F
from megengine import tensor


def test_abs():
16
    np.testing.assert_allclose(
17 18 19 20
        F.abs(tensor([-3.0, -4.0, -5.0])).numpy(),
        np.abs(np.array([-3.0, -4.0, -5.0], dtype=np.float32)),
    )

21
    np.testing.assert_allclose(F.abs(-3.0).numpy(), np.abs(np.float32(-3.0)))
22 23 24


def test_multiply():
25
    np.testing.assert_allclose(
26 27
        F.mul(-3.0, -4.0).numpy(), np.multiply(np.float32(-3.0), np.float32(-4.0))
    )
28

29
    np.testing.assert_allclose(
30 31 32 33
        F.mul(tensor([3.0, 4.0]), 4.0).numpy(),
        np.multiply(np.array([3.0, 4.0], dtype=np.float32), 4.0),
    )

34
    np.testing.assert_allclose(
35 36 37 38
        F.mul(4.0, tensor([3.0, 4.0])).numpy(),
        np.multiply(4.0, np.array([3.0, 4.0], dtype=np.float32)),
    )

39
    np.testing.assert_allclose(
40 41 42 43 44 45 46 47 48 49
        F.mul(tensor([3.0, 4.0]), tensor([3.0, 4.0])).numpy(),
        np.multiply(
            np.array([3.0, 4.0], dtype=np.float32),
            np.array([3.0, 4.0], dtype=np.float32),
        ),
    )


def test_clamp():
    """Fix an issue when `lower` or `upper` is 0, it will be recognized as `False` and
50
    `F.clip` will fall into wrong conditions unexpectedly.
51 52
    """
    x = np.linspace(-6, 6, dtype="float32")
53
    np.testing.assert_allclose(
54
        F.clip(tensor(x) + 3, 0, 6).numpy(), np.clip(x + 3, 0, 6)
55 56
    )
    np.testing.assert_allclose(
57
        F.clip(tensor(x) - 3, -6, 0).numpy(), np.clip(x - 3, -6, 0)
58
    )
59 60


61 62
def test_isnan():
    for case in [[1, float("nan"), 0]]:
63
        np.testing.assert_allclose(F.isnan(tensor(case)).numpy(), np.isnan(case))
64 65 66 67


def test_isinf():
    for case in [[1, float("inf"), 0]]:
68
        np.testing.assert_allclose(F.isinf(tensor(case)).numpy(), np.isinf(case))
69 70 71 72 73


def test_sign():
    for case in [[1, -1, 0]]:
        x = tensor(case)
74
        np.testing.assert_allclose(F.sign(x).numpy(), np.sign(case).astype(x.dtype))
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140


def test_cosh():
    np.random.seed(42)
    x = np.random.randn(100).astype("float32")
    y_np = np.cosh(x)
    y_mge = F.cosh(tensor(x)).numpy()
    np.testing.assert_allclose(y_np, y_mge, rtol=1e-5)


def test_sinh():
    np.random.seed(42)
    x = np.random.randn(100).astype("float32")
    y_np = np.sinh(x)
    y_mge = F.sinh(tensor(x)).numpy()
    np.testing.assert_allclose(y_np, y_mge, rtol=1e-5)


def test_asinh():
    np.random.seed(42)
    x = np.random.randn(100).astype("float32")
    y_np = np.arcsinh(x)
    y_mge = F.asinh(tensor(x)).numpy()
    np.testing.assert_almost_equal(y_np, y_mge, decimal=5)


def test_acosh():
    x = np.arange(0, 10000).astype("float32") / 100 + 1
    y_np = np.arccosh(x)
    y_mge = F.acosh(tensor(x)).numpy()
    np.testing.assert_almost_equal(y_np, y_mge, decimal=6)


def test_atanh():
    np.random.seed(42)
    x = np.random.rand(100).astype("float32") * 2 - 1
    y_np = np.arctanh(x)
    y_mge = F.atanh(tensor(x)).numpy()
    np.testing.assert_almost_equal(y_np, y_mge, decimal=5)


def test_hswish():
    np.random.seed(42)
    x = np.random.randn(100).astype("float32")
    y_np = x * np.minimum(np.maximum(x + 3, 0), 6) / 6
    y_mge = F.hswish(tensor(x)).numpy()
    np.testing.assert_almost_equal(y_np, y_mge, decimal=6)


def test_hsigmoid():
    np.random.seed(42)
    x = np.random.randn(100).astype("float32")
    y_np = np.minimum(np.maximum(x + 3, 0), 6) / 6
    y_mge = F.hsigmoid(tensor(x)).numpy()
    np.testing.assert_equal(y_np, y_mge)


def test_logical_oprs():
    x = np.array([[True, False], [False, True]])
    y = np.array([[True, True], [False, False]])
    xx = tensor(x)
    yy = tensor(y)
    np.testing.assert_equal(~x, (F.logical_not(xx)).numpy())
    np.testing.assert_equal(x & y, F.logical_and(xx, yy).numpy())
    np.testing.assert_equal(x | y, F.logical_or(xx, yy).numpy())
    np.testing.assert_equal(x ^ y, F.logical_xor(xx, yy).numpy())