opr_impl.cpp 10.9 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/fallback/relayout/opr_impl.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "src/fallback/relayout/opr_impl.h"
#include "src/naive/handle.h"
#include "src/common/utils.h"
#include "src/common/relayout_helper.h"

#include <cstring>

using namespace megdnn;
using namespace fallback;

namespace {

bool is_lastdim_contig(const TensorLayout& layout) {
    return layout.ndim <= 3 && layout.stride[layout.ndim - 1] == 1;
}

template<size_t sz, typename T0 = char>
struct equiv_ctype_storage {
    T0 _[sz];
};

template <typename dtype>
struct equiv_ctype {
    using type =
            std::aligned_storage_t<sizeof(typename DTypeTrait<dtype>::ctype),
                                   alignof(typename DTypeTrait<dtype>::ctype)>;
};

typedef void(*memcpy_policy_t)(void* cont, void* non_cont, size_t);

void memcpy_cont2noncont(void *cont, void *non_cont, size_t size) {
    memcpy(non_cont, cont, size);
}

void memcpy_noncont2cont(void *cont, void *non_cont, size_t size) {
    memcpy(cont, non_cont, size);
}

template <typename T>
void call_transpose(size_t batch, size_t m, size_t n, size_t ch, void* src,
                    void* dst) {
    megdnn_assert(ch == 1);
    relayout::transpose_fallback::transpose<T>(
            batch, m, n, static_cast<T*>(src), static_cast<T*>(dst));
}

//! one operand contiguous, and the other non-contiguous
template<typename ctype>
void dispatch_on_dtype_cont(
        Handle *handle,
        const TensorND &cont, const TensorND &nonc, memcpy_policy_t mcp_pol) {
    auto ctptr = static_cast<uint8_t*>(cont.raw_ptr),
         ncptr = static_cast<uint8_t*>(nonc.raw_ptr);
    thin_function<void()> kern;
    switch (nonc.layout.ndim) {
        case 2: {
            auto shp0 = nonc.layout.shape[0],
                 shp1 = nonc.layout.shape[1];
            auto strd0_n = nonc.layout.stride[0] * sizeof(ctype);
            auto strd0_c = shp1 * sizeof(ctype);
            kern = [=]() {
                auto cur_ctptr = ctptr;
                auto cur_ncptr = ncptr;
                for (size_t i = 0; i < shp0; ++ i) {
                    mcp_pol(cur_ctptr, cur_ncptr, strd0_c);
                    cur_ctptr += strd0_c;
                    cur_ncptr += strd0_n;
                }
            };
            break;
        }
        case 3: {
            auto shp0 = nonc.layout.shape[0],
                 shp1 = nonc.layout.shape[1],
                 shp2 = nonc.layout.shape[2];
            auto strd0_n = nonc.layout.stride[0] * sizeof(ctype),
                 strd1_n = nonc.layout.stride[1] * sizeof(ctype);
            auto strd1_c = shp2 * sizeof(ctype);
            kern = [=]() {
                auto cur_ctptr = ctptr;
                auto ncptr_row = ncptr;
                for (size_t i = 0; i < shp0; ++ i) {
                    auto cur_ncptr = ncptr_row;
                    for (size_t j = 0; j < shp1; ++ j) {
                        mcp_pol(cur_ctptr, cur_ncptr, strd1_c);
                        cur_ctptr += strd1_c;
                        cur_ncptr += strd1_n;
                    }
                    ncptr_row += strd0_n;
                }
            };
            break;
        }
        default:
            megdnn_assert(0);
    }

    static_cast<naive::HandleImpl*>(handle)->dispatch_kern(std::move(kern));
}

void dispatch_cont(Handle *handle, const TensorND &cont, const TensorND &nonc,
        memcpy_policy_t mcp_pol) {
    switch (cont.layout.dtype.enumv()) {
#define cb(_dt) case DTypeTrait<dtype::_dt>::enumv: \
        return dispatch_on_dtype_cont<equiv_ctype<dtype::_dt>::type>( \
                handle, cont, nonc, mcp_pol);
        MEGDNN_FOREACH_DTYPE_NAME(cb)
        MEGDNN_FOREACH_PARAMETERIZED_DTYPE(cb)
#undef cb
        megdnn_assert(0);
    }
}

const size_t BLOCK_SIZE = 16,
             TRANSPOSE_CV_MAX_C =
                     relayout::transpose_fallback::BLOCK_LINE_SIZE_BYTES;

/*!
 * \tparam ctype The type of the data
 */
template <typename ctype>
void transpose_cv_block(size_t m, size_t n, size_t ch, size_t i, size_t j,
                        size_t h, size_t w, void *src, void *dst) {
    auto batch_src = static_cast<const ctype*>(src);
    auto batch_dst = static_cast<ctype*>(dst);

#define SET_VAL(dst, src)                                         \
    switch (ch) {                                                 \
        case 3:                                                   \
            dst[2] = src[2]; MEGDNN_FALLTHRU                      \
        case 2:                                                   \
            dst[1] = src[1]; MEGDNN_FALLTHRU                      \
        case 1:                                                   \
            dst[0] = src[0];                                      \
            break;                                                \
        default:                                                  \
            for (size_t _c = 0; _c < ch; ++_c) dst[_c] = src[_c]; \
            break;                                                \
    }

    constexpr size_t B = BLOCK_SIZE;
    static_assert(TRANSPOSE_CV_MAX_C % sizeof(ctype) == 0, "bad ctype");
    ctype tmp[B][B][TRANSPOSE_CV_MAX_C / sizeof(ctype)];
    auto sptr = batch_src + i * n * ch + j * ch;
    for (size_t x = 0; x < h; ++x) {
        for (size_t y = 0; y < w; ++y) {
            SET_VAL(tmp[y][x], (sptr + y * ch))
        }
        sptr += n * ch;
    }

    auto dptr = batch_dst + j * m * ch + i * ch;
    for (size_t x = 0; x < w; ++x) {
        for (size_t y = 0; y < h; ++y) {
            SET_VAL((dptr + y * ch), tmp[x][y])
        }
        dptr += m * ch;
    }
#undef SET_VAL
}

template <typename ctype>
void transpose_cv_row(size_t m, size_t n, size_t ch, size_t i, size_t h,
                      void *src, void *dst) {
    constexpr size_t B = BLOCK_SIZE;
    size_t j = 0;
    for (; j + B <= n; j += B) {
        transpose_cv_block<ctype>(m, n, ch, i, j, h, B, src, dst);
    }
    if (j < n) {
        transpose_cv_block<ctype>(m, n, ch, i, j, h, n - j, src, dst);
    }
}

template <typename ctype>
void transpose_cv(size_t batch, size_t m, size_t n, size_t ch, void *src,
                  void *dst) {
    constexpr size_t B = BLOCK_SIZE;
    auto batch_src = static_cast<ctype *>(src);
    auto batch_dst = static_cast<ctype *>(dst);
    for (size_t b = 0; b < batch; ++b) {
        size_t i = 0;
        for (; i + B <= m; i += B) {
            transpose_cv_row<ctype>(m, n, ch, i, B, batch_src, batch_dst);
        }
        if (i < m) {
            transpose_cv_row<ctype>(m, n, ch, i, m - i, batch_src, batch_dst);
        }
        batch_src += m * n * ch;
        batch_dst += m * n * ch;
    }
}

} // anonymous namespace

void RelayoutForwardImpl::exec(
        _megdnn_tensor_in src0, _megdnn_tensor_out dst0,
        Handle *src_handle) {
    check_cpu_handle(src_handle);
    TensorND src = src0, dst = dst0;
    check_layout_and_canonize(src.layout, dst.layout);

    bool has_neg_stride = false;
    for (size_t i = 0; i < src.layout.ndim; ++ i) {
        if (src.layout.stride[i] < 0) {
            has_neg_stride = true;
            break;
        }
    }
    for (size_t i = 0; i < dst.layout.ndim; ++ i) {
        if (dst.layout.stride[i] < 0) {
            has_neg_stride = true;
            break;
        }
    }
    if (has_neg_stride) {
        NaiveRelayoutForwardImpl::do_exec(src, dst);
        return;
    }

    relayout::TransposeParam trans_param;
    bool trans = relayout::is_transpose(src.layout, dst.layout, trans_param);
    exec_after_preprocess(src, dst, trans ? &trans_param : nullptr);
}

void RelayoutForwardImpl::exec_after_preprocess(
        const TensorND& src, const TensorND& dst,
        relayout::TransposeParam* transpose) {
    if (transpose) {
        auto dsize = src.layout.dtype.size() * transpose->c;
        void (*kptr)(size_t, size_t, size_t, size_t, void*, void*) = nullptr;
        auto src_addr = reinterpret_cast<uintptr_t>(src.raw_ptr),
             dst_addr = reinterpret_cast<uintptr_t>(dst.raw_ptr);
        if (dsize == 1) {
            megdnn_assert(transpose->c == 1);
            kptr = call_transpose<uint8_t>;
        } else if (dsize == 2) {
            transpose->c = 1;
            if (!((src_addr | dst_addr) & (alignof(uint16_t) - 1))) {
                kptr = call_transpose<uint16_t>;
            } else {
                kptr = call_transpose<equiv_ctype_storage<2>>;
                megdnn_log_error("unaligned addr in relayout");
            }
        } else if (dsize == 3) {
            transpose->c = 1;
            kptr = call_transpose<equiv_ctype_storage<3>>;
        } else if (dsize == 4) {
            transpose->c = 1;
            if (!((src_addr | dst_addr) & (alignof(uint32_t) - 1))) {
                kptr = call_transpose<uint32_t>;
            } else {
                kptr = call_transpose<equiv_ctype_storage<4>>;
                megdnn_log_error("unaligned addr in relayout");
            }
        } else if (dsize == 12) {
            transpose->c = 1;
            if (!((src_addr | dst_addr) & (alignof(uint32_t) - 1))) {
                kptr = call_transpose<equiv_ctype_storage<3, uint32_t>>;
            } else {
                kptr = call_transpose<equiv_ctype_storage<12>>;
                megdnn_log_error("unaligned addr in relayout");
            }
        } else if (dsize <= TRANSPOSE_CV_MAX_C) {
            switch (dst.layout.dtype.enumv()) {
#define cb(_dt)                                             \
    case DTypeTrait<dtype::_dt>::enumv:                     \
        kptr = transpose_cv<equiv_ctype<dtype::_dt>::type>; \
        break;
                MEGDNN_FOREACH_DTYPE_NAME(cb)
                MEGDNN_FOREACH_PARAMETERIZED_DTYPE(cb)
#undef cb
            }
            megdnn_assert(kptr);
        }

        if (kptr) {
            auto kern = [
                t = *transpose, sptr = src.raw_ptr, dptr = dst.raw_ptr, kptr
            ]() {
                kptr(t.batch, t.m, t.n, t.c, sptr, dptr);
            };
            static_cast<naive::HandleImpl*>(handle())->dispatch_kern(kern);
            return;
        } else {
            megdnn_assert(transpose->c != 1, "unsupported dtype size");
        }
    }

    using relayout::is_contig;

    if (is_contig(dst.layout) && is_contig(src.layout)) {
        auto sptr = src.raw_ptr, dptr = dst.raw_ptr;
        auto sz = src.layout.span().dist_byte();
        MEGDNN_DISPATCH_CPU_KERN_OPR(memcpy(dptr, sptr, sz));
        return;
    }

    if (is_contig(dst.layout) && is_lastdim_contig(src.layout)) {
        return dispatch_cont(handle(), dst, src, memcpy_noncont2cont);
    }

    if (is_contig(src.layout) && is_lastdim_contig(dst.layout)) {
        return dispatch_cont(handle(), src, dst, memcpy_cont2noncont);
    }
    NaiveRelayoutForwardImpl::do_exec(src, dst);
}

// vim: syntax=cpp.doxygen