serializer_oss.cpp 31.9 KB
Newer Older
1 2 3 4
/**
 * \file src/serialization/impl/serializer_oss.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

/*
 * Dump file layout:
 * [uint32_t fourcc]
 * [00 00 00 00]
 * [uint64_t offset to graph from tensor start]
 * [Tensor 1]
 * [Tensor 2]
 * [...]
 * [Tensor N]
 * [SizePrefixed FlatBuffers Graph]
 */
#if MGB_ENABLE_FBS_SERIALIZATION

#include "batched_device_value_loader.h"

#include "megbrain/graph/exc_extra_info.h"
#include "megbrain/opr/io.h"
#include "megbrain/serialization/helper.h"
#include "megbrain/serialization/internal/flatbuffers_helper.h"
#include "megbrain/serialization/internal/schema_generated.h"
#include "megbrain/serialization/opr_load_dump.h"
#include "megbrain/serialization/serializer.h"
#include "megbrain/version.h"

36 37
#include <flatbuffers/flatbuffers.h>

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#include <cerrno>
#include <cinttypes>
#include <cstdio>

using namespace mgb;
using namespace mgb::serialization;

namespace {

constexpr uint32_t MGB_VERSION =
        (MGB_MAJOR * 1000 + MGB_MINOR) * 100 + MGB_PATCH;

constexpr uint32_t MGB_MAGIC = 0x5342474D;

template <typename T>
bool contains_any_in_set(const SmallVector<T>& list,
                         const ThinHashSet<T>& set) {
    for (const auto& x : list) {
        if (set.count(x)) {
            return true;
        }
    }
    return false;
}

void check_tensor_value_valid(const std::string& name,
                              const HostTensorND& tensor) {
M
Megvii Engine Team 已提交
65 66 67 68 69 70
    bool cond_normal = tensor.layout().format.is_default() &&
                       tensor.layout().is_physical_contiguous();
    bool cond_lowbit = tensor.layout().dtype.is_quantized_lowbit() &&
                       tensor.layout().format.is_lowbit_aligned() &&
                       tensor.layout().is_contiguous();
    mgb_assert(cond_normal || cond_lowbit,
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
               "non-contiguous tensor: name=%s layout=%s", name.c_str(),
               tensor.layout().to_string().c_str());
    if (tensor.dtype() == dtype::Float32()) {
        auto ptr = tensor.ptr<float>();
        for (size_t i = 0, it = tensor.shape().total_nr_elems(); i < it; ++i) {
            if (!std::isfinite(ptr[i])) {
                mgb_log_warn("invalid tensor value in %s: %g", name.c_str(),
                             ptr[i]);
                break;
            }
        }
    }
}

}  // namespace

namespace mgb {
namespace serialization {

class GraphDumperOSS final : public GraphDumper, OprDumpContextFlatBuffers {
    const std::unique_ptr<OutputFile> m_file;
    flatbuffers::FlatBufferBuilder m_builder;

    DumpConfig m_config;
    DumpResult m_cur_rst;

    size_t m_nr_shared_tensor;

    std::vector<std::pair<cg::OperatorNodeBase*, const OprRegistry*>>
            m_oprs_to_dump;
    ThinHashMap<VarNode*, size_t> m_var2id;

    //! set of output vars specified by user
    ThinHashSet<VarNode*> m_output_vars;

    std::unordered_set<std::string> m_used_input_names, m_used_param_names;

    //! current opr to be dumped
    cg::OperatorNodeBase* m_cur_opr = nullptr;

    // Will be filled in dump_tensor
    std::vector<flatbuffers::Offset<fbs::Tensor>> m_cur_opr_tensor;
    std::vector<flatbuffers::Offset<fbs::Blob>> m_blobs;
    std::vector<fbs::OperatorParam> m_cur_opr_param_type;
    std::vector<flatbuffers::Offset<void>> m_cur_opr_param;

    void init_oprs_to_dump(const SymbolVarArray& endpoints);
    flatbuffers::Offset<fbs::Operator> build_single_opr(
            cg::OperatorNodeBase* opr, const OprRegistry* registry);

    flatbuffers::Offset<fbs::DType> build_dtype(DType dtype);

public:
    GraphDumperOSS(std::unique_ptr<OutputFile> file) : m_file{std::move(file)} {}
    DumpResult dump(const SymbolVarArray& output_vars,
                    const DumpConfig& config = {}) override;
    const GraphDumpConfig& config() const override { return m_config; }
    void dump_tensor(const std::string& name, const HostTensorND& tensor,
                     TensorWriteMethod method) override;
    flatbuffers::FlatBufferBuilder& builder() override { return m_builder; }
131 132 133 134 135 136
    void append_param(uint32_t type, uint32_t value) override {
        static_assert(std::is_same<uint32_t, flatbuffers::uoffset_t>::value,
                      "append_param depends on uoffset_t being uint32_t");
        static_assert(std::is_standard_layout<flatbuffers::Offset<void>>::value,
                      "append_param depends on flatbuffers::Offset having "
                      "standard memory layout");
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
        mgb_assert(type != fbs::OperatorParam_NONE);
        m_cur_opr_param_type.emplace_back(
                static_cast<fbs::OperatorParam>(type));
        m_cur_opr_param.emplace_back(value);
    }
    void dump_buf_with_len(const void* data, uint32_t size) override;
    GraphDumpFormat format() const override {
        return GraphDumpFormat::FLATBUFFERS;
    }
};

flatbuffers::Offset<fbs::DType> GraphDumperOSS::build_dtype(DType dtype) {
    return fbs::intl::build_dtype(m_builder, dtype);
}

void GraphDumperOSS::init_oprs_to_dump(const SymbolVarArray& endpoints) {
    m_oprs_to_dump.clear();
    m_var2id.clear();

    // iterate oprs to init m_var2id
    size_t next_id = 0;
    auto on_opr = [&](cg::OperatorNodeBase* opr) {
        if (should_remove_in_dump(opr)) {
            mgb_assert(opr->input().size() == 1);
            // Copy input ID to output
            auto id = m_var2id.at(opr->input(0));
            for (auto i : opr->output())
                m_var2id[i] = id;
        } else {
            auto registry = OprRegistry::find_by_type(opr->dyn_typeinfo());
            if (!registry || !registry->dumper) {
                mgb_throw(cg::OperatorNodeExcExtraInfo::ExcMaker{opr}
                                  .make<MegBrainError>,
                          "serialization as FlatBuffers is not supported for "
                          "operator %s",
                          opr->dyn_typeinfo()->name);
            }
            m_oprs_to_dump.emplace_back(opr, registry);
            for (auto i : opr->output()) {
                if (!i->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) {
                    m_var2id[i] = next_id++;
                }
            }
        }
    };
    cg::DepOprIter dep_opr_iter{on_opr};
    for (auto i : endpoints) {
        dep_opr_iter.add(i.node()->owner_opr());
    }
}

flatbuffers::Offset<fbs::Operator> GraphDumperOSS::build_single_opr(
        cg::OperatorNodeBase* opr, const OprRegistry* registry) {
    m_cur_opr = opr;
    ++m_cur_rst.nr_opr;

    using namespace flatbuffers;
    Offset<Vector<Offset<fbs::CompNode>>> comp_node;
    auto& config = opr->config();
    if (config.has_comp_node_set()) {
        std::vector<flatbuffers::Offset<fbs::CompNode>> cns;
        for (const auto& cn : config.comp_node()) {
            cns.emplace_back(fbs::CreateCompNode(
                    m_builder,
                    m_builder.CreateSharedString(cn.to_string_logical())));
        }
        comp_node = m_builder.CreateVector(cns);
    }

    Offset<Vector<uint32_t>> inputs;
    if (opr->input().size()) {
        std::vector<uint32_t> v;
        v.reserve(opr->input().size());
        for (auto inp : opr->input()) {
            v.emplace_back(m_var2id.at(inp));
        }
        inputs = m_builder.CreateVector(v);
    }

216 217 218 219 220
    Offset<String> operator_name;
    if (m_config.keep_op_name) {
        operator_name = m_builder.CreateSharedString(opr->name());
    }

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    Offset<Vector<Offset<String>>> output_names;
    if (m_config.keep_var_name >= 2 ||
        (m_config.keep_var_name == 1 &&
         contains_any_in_set(opr->output(), m_output_vars))) {
        std::vector<std::string> onames;
        for (auto i : opr->output()) {
            if (!i->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) {
                onames.emplace_back(i->name());
            }
        }
        output_names = m_builder.CreateVectorOfStrings(onames);
    }

    auto output_dtype = build_dtype(config.output_dtype());

    m_cur_opr_tensor.clear();
    m_blobs.clear();
    m_cur_opr_param.clear();
    m_cur_opr_param_type.clear();
    registry->dumper(*this, *opr);

    Offset<Vector<Offset<fbs::Tensor>>> tensors;
    if (m_cur_opr_tensor.size())
        tensors = m_builder.CreateVector(m_cur_opr_tensor);

    Offset<Vector<Offset<fbs::Blob>>> blobs;
    if (m_blobs.size())
        blobs = m_builder.CreateVector(m_blobs);

    Offset<Vector<uint8_t>> additional_params_type;
    Offset<Vector<Offset<void>>> additional_params;
    auto param_cnt = m_cur_opr_param_type.size();
    if (param_cnt > 1) {
        additional_params_type = m_builder.CreateVectorScalarCast<uint8_t>(
                m_cur_opr_param_type.data() + 1, param_cnt - 1);
        additional_params = m_builder.CreateVector(m_cur_opr_param.data() + 1,
                                                   param_cnt - 1);
    }

    fbs::OperatorBuilder builder(m_builder);
    builder.add_type_id(registry->unversioned_type_id);
    builder.add_inputs(inputs);
    if (m_config.keep_opr_priority) {
        builder.add_priority(opr->node_prop().attribute().priority);
    }
    builder.add_comp_node(comp_node);
    builder.add_output_name(output_names);
268
    builder.add_name(operator_name);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
    builder.add_output_dtype(output_dtype);
    if (param_cnt > 0) {
        builder.add_param_type(m_cur_opr_param_type[0]);
        builder.add_param(m_cur_opr_param[0]);
    }
    if (param_cnt > 1) {
        builder.add_additional_params_type(additional_params_type);
        builder.add_additional_params(additional_params);
    }
    builder.add_tensors(tensors);
    builder.add_blobs(blobs);
    m_cur_opr = nullptr;
    return builder.Finish();
}

GraphDumper::DumpResult GraphDumperOSS::dump(
        const SymbolVarArray& output_vars, const DumpConfig& config) {
    mgb_throw_if(output_vars.empty(), SerializationError,
                 "Can't dump empty graph");

    auto begin_pos = m_file->tell();
    m_config = config;
    m_builder.Reset();

    m_output_vars.clear();
    m_cur_rst = {};
    m_used_input_names.clear();
    m_used_param_names.clear();
    m_nr_shared_tensor = 0;

    // process output vars
    bool keep_output_var_name = m_config.keep_var_name >= 1;
    std::unordered_set<std::string> output_var_names;
    for (auto i : output_vars) {
        mgb_assert(!i.node()->contain_flag(VarNode::Flag::VOLATILE_CONTENT),
                   "can not dump var with VOLATILE_CONTENT flag: %s",
                   cg::dump_var_info({i.node()}).c_str());
        if (m_output_vars.insert(i.node()).second && keep_output_var_name) {
            auto name_ins = output_var_names.insert(i.node()->name()).second;
            mgb_assert(name_ins, "duplicated output var name: %s",
                       i.node()->cname());
        }
    }

    // Write magic
    uint32_t magic = MGB_MAGIC;
    m_file->write(&magic, sizeof(magic));

    // Padding
    uint32_t reserved = 0;
    m_file->write(&reserved, sizeof(reserved));

    // Write placeholder for offset_to_fbs
    auto offset_pos = m_file->tell();
    uint64_t offset_to_fbs = 0;
    m_file->write(&offset_to_fbs, sizeof(offset_to_fbs));

    // Dump operators
    init_oprs_to_dump(output_vars);
    std::vector<flatbuffers::Offset<fbs::Operator>> oprs;
    for (auto&& i : m_oprs_to_dump) {
        oprs.emplace_back(build_single_opr(i.first, i.second));
    }
    auto fb_oprs = m_builder.CreateVector(oprs);

    // Dump output vars
    std::vector<fbs::OutputVar> output_vars_idx;
    output_vars_idx.reserve(output_vars.size());
    for (auto i : output_vars) {
        output_vars_idx.emplace_back(m_var2id.at(i.node()), i.node()->id());
    }
    auto fb_output_vars = m_builder.CreateVectorOfStructs(output_vars_idx);

    XXHash content_hash;
    content_hash.update(m_builder.GetCurrentBufferPointer(),
                        m_builder.GetSize());
    auto graph_hash = content_hash.digest();

    fbs::GraphBuilder graph(m_builder);
    graph.add_mgb_version(MGB_VERSION);
    graph.add_hash(graph_hash);
    graph.add_oprs(fb_oprs);
    graph.add_output_vars_idx(fb_output_vars);
    graph.add_nr_shared_tensor(m_nr_shared_tensor);
    m_builder.FinishSizePrefixed(graph.Finish(), fbs::GraphIdentifier());

    // Write actual offset_to_fbs
    auto cur = m_file->tell();
    mgb_assert(cur >= offset_pos && cur - offset_pos >= sizeof(offset_to_fbs));
    offset_to_fbs = cur - offset_pos - sizeof(offset_to_fbs);
    m_file->seek(offset_pos);
    m_file->write(&offset_to_fbs, sizeof(offset_to_fbs));
    m_file->seek(cur);

    // Write serialized fbs::Graph
    m_file->write(m_builder.GetBufferPointer(), m_builder.GetSize());

    // Finalize DumpResult
    auto&& ret = m_cur_rst;
    for (size_t i = 0; i < output_vars.size(); i++) {
        ret.outputs.emplace_back(keep_output_var_name
                                         ? output_vars[i].node()->cname()
                                         : ssprintf("unnamed%zu", i));
    }
    ret.content_hash = graph_hash;
    std::sort(ret.inputs.begin(), ret.inputs.end());
    mgb_assert(ret.nr_opr == m_oprs_to_dump.size());
    ret.tot_bytes = m_file->tell() - begin_pos;
    return ret;
}

void GraphDumperOSS::dump_tensor(const std::string& name,
                                       const HostTensorND& tensor,
                                       TensorWriteMethod method) {
    using namespace flatbuffers;
    using Meth = TensorWriteMethod;
    mgb_assert((method == Meth::VALUE_ANONYMOUS) ^ (!name.empty()),
               "name must be non-empty for non Meth::VALUE_ANONYMOUS tensors");

    bool has_value = method != Meth::META_INPUT;
    bool should_keep_name = true;
    switch (method) {
        case Meth::VALUE_ANONYMOUS:
            should_keep_name = false;
            break;
        case Meth::VALUE_SHARED:
            should_keep_name = m_config.keep_param_name;
            ++m_nr_shared_tensor;
            if (m_config.keep_param_name) {
                mgb_assert(m_used_param_names.insert(name).second,
                           "duplicated VALUE_SHARED tensor name: %s",
                           name.c_str());
                m_cur_rst.params.emplace_back(name);
            }
            break;
        case Meth::META_INPUT:
        case Meth::VALUE_INPUT:
            mgb_assert(!name.empty(), "empty input tensor name");
            mgb_assert(m_used_input_names.insert(name).second,
                       "duplicated input tensor name: %s", name.c_str());
            m_cur_rst.inputs.emplace_back(name);
            break;
    }

    size_t value_size = 0;
    if (has_value) {
        check_tensor_value_valid(name, tensor);
        auto begin = m_file->tell();
        auto&& dumper = m_config.tensor_value_dumper;
        if (dumper) {
            dumper(*m_file, *m_cur_opr, tensor);
        } else {
            m_file->write(tensor.raw_ptr(), tensor.layout().span().high_byte);
        }
        value_size = m_file->tell() - begin;
        m_cur_rst.tensor_value_bytes += value_size;
    }

    auto fbname = should_keep_name ? m_builder.CreateSharedString(name) : 0;
    auto shape = m_builder.CreateVectorScalarCast<uint32_t>(
            tensor.shape().shape, tensor.shape().ndim);
    auto comp_node = fbs::CreateCompNode(
            m_builder, m_builder.CreateSharedString(
                               tensor.comp_node().to_string_logical()));
    auto dtype = build_dtype(tensor.dtype());
    auto serialized_tensor = fbs::CreateTensor(m_builder, fbname, shape,
                                               comp_node, dtype, value_size);
    m_cur_opr_tensor.emplace_back(serialized_tensor);
}

void GraphDumperOSS::dump_buf_with_len(const void* data, uint32_t size) {
    auto blob = fbs::CreateBlob(
            m_builder,
            m_builder.CreateVector(static_cast<const uint8_t*>(data), size));
    m_blobs.emplace_back(blob);
}

// ----------------------------- Loader --------------------------------------

class GraphLoaderOSS final : public GraphLoader {
    const LoadConfig* m_cur_load_config = nullptr;
    std::unique_ptr<InputFile> m_file;
    SharedBuffer m_graph_buf{{}, 0};
    const fbs::Graph* m_graph;
    SharedTensorIDMap m_shared_tensor_map;
    uint32_t m_mgb_version = 0;
    uint64_t m_graph_hash = 0;

    class OprLoadContextImpl;
    friend class OprLoadContextImpl;

    void verify();

public:
    GraphLoaderOSS(std::unique_ptr<InputFile> input_file)
            : m_file{std::move(input_file)} {}

    std::unique_ptr<InputFile> reset_file(
            std::unique_ptr<InputFile> file) override {
        file.swap(m_file);
        return file;
    }

    LoadResult load(const LoadConfig& config, bool rewind) override;

    const SharedTensorIDMap& shared_tensor_id_map() const override {
        mgb_assert(m_graph_hash, "graph not loaded yet");
        return m_shared_tensor_map;
    }

    GraphDumpFormat format() const override {
        return GraphDumpFormat::FLATBUFFERS;
    }
};

class GraphLoaderOSS::OprLoadContextImpl final
        : public OprLoadContextFlatBuffers {
    GraphLoaderOSS* const m_loader;
    size_t m_cur_shared_tensor_idx = 0;
    std::shared_ptr<ComputingGraph> m_graph;
    LoadResult::TensorMap m_tensor_map;
    VarNodeArray m_id2varnode;
    BatchedDeviceValueLoader m_device_value_loader;
    const fbs::Operator* m_current_opr;
    size_t m_cur_opr_tensor_cnt;
    size_t m_cur_opr_blob_cnt;
    size_t m_cur_opr_param_cnt;

    ComputingGraph& graph() override { return *m_graph; }

    const GraphLoadConfig& config() const override {
        return *m_loader->m_cur_load_config;
    }

    void load_tensor_value(HostTensorND* dest, const TensorLayout& layout,
                           const fbs::Tensor* tensor);

    std::shared_ptr<HostTensorND> load_tensor() override;

    std::shared_ptr<DeviceTensorND> load_tensor_shared() override;

    void load_single_opr(const fbs::Operator* opr);

public:
    OprLoadContextImpl(GraphLoaderOSS* loader, uint32_t version)
            : OprLoadContextFlatBuffers(version), m_loader{loader} {
        m_graph = loader->m_cur_load_config->comp_graph;
        if (!m_graph) {
            m_graph = ComputingGraph::make();
        }
        auto maker = [this]() {
            return std::shared_ptr<OprLoadContext>{
                    std::shared_ptr<OprLoadContext>{}, this};
        };
        auto got = m_graph->options()
                           .user_data.get_user_data_or_create<OprLoadContext>(
                                   maker);
        mgb_assert(got == this);
    }

    ~OprLoadContextImpl() noexcept {
        auto nr = m_graph->options().user_data.pop_user_data<OprLoadContext>();
        mgb_assert(nr == 1);
    }

    LoadResult load_oprs();
    CompNode load_comp_node(const fbs::CompNode* comp_node);

    const void* get_next_param(uint32_t enumv) override {
        auto type = static_cast<fbs::OperatorParam>(enumv);
        if (m_cur_opr_param_cnt == 0) {
            m_cur_opr_param_cnt++;
            if (m_current_opr->param_type() == type) {
                return m_current_opr->param();
            }
        } else {
            mgb_assert(m_current_opr->additional_params() &&
                       m_cur_opr_param_cnt - 1 <
                               m_current_opr->additional_params()->size());
            auto i = m_cur_opr_param_cnt++ - 1;
            if (m_current_opr->additional_params_type()->Get(i) == type) {
                return m_current_opr->additional_params()->Get(i);
            }
        }
        return nullptr;
    }

    std::string load_buf_with_len() override {
        mgb_assert(m_current_opr->blobs() &&
                   m_cur_opr_blob_cnt < m_current_opr->blobs()->size());
        auto blob = m_current_opr->blobs()->Get(m_cur_opr_blob_cnt++);
        mgb_assert(blob && blob->data());
        auto data = blob->data()->data();
        return {reinterpret_cast<const char*>(data), blob->data()->size()};
    }
    SharedBuffer load_shared_buf_with_len() override {
        mgb_assert(m_current_opr->blobs() &&
                   m_cur_opr_blob_cnt < m_current_opr->blobs()->size());
        auto blob = m_current_opr->blobs()->Get(m_cur_opr_blob_cnt++);
        mgb_assert(blob && blob->data());
        auto size = blob->data()->size();
        std::shared_ptr<uint8_t> shptr{new uint8_t[size],
                                       [](uint8_t* p) { delete[] p; }};
        memcpy(shptr.get(), blob->data()->data(), size);
        return {std::move(shptr), size};
    }
};

CompNode GraphLoaderOSS::OprLoadContextImpl::load_comp_node(
        const fbs::CompNode* comp_node) {
    mgb_assert(comp_node);
    if (!comp_node->logical_locator())
        return {};
    auto loc = CompNode::Locator::parse(comp_node->logical_locator()->str());
    m_loader->m_cur_load_config->comp_node_mapper(loc);
    return CompNode::load(loc);
}

TensorLayout load_tensor_layout(const fbs::Tensor* tensor) {
    TensorLayout layout;
    if (tensor->shape()) {
        layout.ndim = tensor->shape()->size();
        std::copy(tensor->shape()->begin(), tensor->shape()->end(),
                  layout.shape);
    }
    if (tensor->dtype()) {
M
Megvii Engine Team 已提交
595 596
        // modify data type inplace for TensorLayout
        layout.modify_dtype_inplace(fbs::intl::load_dtype(tensor->dtype()));
597
    }
M
Megvii Engine Team 已提交
598
    layout.init_contiguous_stride();
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
    return layout;
}

void GraphLoaderOSS::OprLoadContextImpl::load_tensor_value(
        HostTensorND* dest, const TensorLayout& layout,
        const fbs::Tensor* tensor) {
    auto&& loader = m_loader->m_cur_load_config->tensor_value_loader;
    auto&& file = m_loader->m_file;
    auto begin_pos = file->tell();
    file->skip(tensor->offset());
    if (loader) {
        // call custom loader
        void* dest_ptr = nullptr;
        if (dest) {
            dest->dtype(layout.dtype).resize(layout);
            dest_ptr = dest->raw_ptr();
        }
        loader(dest_ptr, layout, *file);
    } else {
        if (dest) {
            file->read_into_tensor(*dest, layout);
        } else {
            file->skip(layout.span().high_byte);
        }
    }
    mgb_throw_if(file->tell() < begin_pos, SerializationError,
                 "Custom tensor value loader accessed out of range data before "
                 "start of data blob");
    auto data_size = tensor->data_size();
    auto consumed_size = file->tell() - begin_pos;
    mgb_throw_if(consumed_size > data_size, SerializationError,
                 "Custom tensor value loader consumed more data than "
                 "available: consumed %lu, has %u",
                 consumed_size, data_size);
    if (consumed_size < data_size) {
        mgb_log_warn(
                "Tensor value loader consumed less data than available: "
                "consumed %lu bytes, has %u bytes",
                consumed_size, data_size);
        file->skip(data_size - consumed_size);
    }
}

std::shared_ptr<HostTensorND>
GraphLoaderOSS::OprLoadContextImpl::load_tensor() {
    mgb_assert(m_current_opr->tensors() &&
               m_cur_opr_tensor_cnt < m_current_opr->tensors()->size());
    auto tensor = m_current_opr->tensors()->Get(m_cur_opr_tensor_cnt++);
    auto comp_node = load_comp_node(tensor->comp_node());
    auto layout = load_tensor_layout(tensor);
    auto ret = std::make_shared<HostTensorND>(comp_node, layout);
    if (tensor->data_size()) {
        load_tensor_value(ret.get(), layout, tensor);
    }
    if (tensor->name()) {
        m_tensor_map[tensor->name()->str()] = ret;
    }
    if (auto&& mod = m_loader->m_cur_load_config->tensor_modifier) {
        mod(tensor->name() ? tensor->name()->str() : "",
            tensor->data_size() != 0, *ret);
    }
    return ret;
}

std::shared_ptr<DeviceTensorND>
GraphLoaderOSS::OprLoadContextImpl::load_tensor_shared() {
    mgb_assert(m_current_opr->tensors() &&
               m_cur_opr_tensor_cnt < m_current_opr->tensors()->size());
    auto tensor = m_current_opr->tensors()->Get(m_cur_opr_tensor_cnt++);
    auto comp_node = load_comp_node(tensor->comp_node());
    auto layout = load_tensor_layout(tensor);
    mgb_assert(tensor->data_size());
    auto&& sh_reg = m_loader->m_shared_tensor_map.at(m_cur_shared_tensor_idx++);
    auto&& sh_ptr_ref = sh_reg.second[comp_node.mem_node()];
    if (sh_ptr_ref) {
        // cached tensor value is valid so we can reuse it
        load_tensor_value(nullptr, layout, tensor);
        if (sh_ptr_ref->comp_node() == comp_node)
            return sh_ptr_ref;
        // same mem node but different comp node, change comp node and share
        // value
        auto ret = std::make_shared<DeviceTensorND>(*sh_ptr_ref);
        ret->comp_node(comp_node);
        return ret;
    }
    if (tensor->name()) {
        sh_reg.first = tensor->name()->str();
    }

    if (comp_node.mem_node() == CompNode::default_cpu().mem_node()) {
        // directly forward CPU memory
        HostTensorND hv{comp_node};
        load_tensor_value(&hv, layout, tensor);
        sh_ptr_ref = std::make_shared<DeviceTensorND>();
        *sh_ptr_ref = DeviceTensorND::make_proxy(hv);
    } else {
        // use lazy load for non-CPU devices
        HostTensorND hv{CompNode::default_cpu()};
        load_tensor_value(&hv, layout, tensor);
        sh_ptr_ref = m_device_value_loader.make(comp_node, std::move(hv));
    }
    return sh_ptr_ref;
}

void GraphLoaderOSS::OprLoadContextImpl::load_single_opr(
        const fbs::Operator* fbopr) {
    m_cur_opr_tensor_cnt = 0;
    m_cur_opr_blob_cnt = 0;
    m_cur_opr_param_cnt = 0;

    OperatorNodeConfig config;
    if (fbopr->output_dtype()) {
        config.output_dtype(fbs::intl::load_dtype(fbopr->output_dtype()));
    }
713 714 715
    if (fbopr->name()) {
        config.name(fbopr->name()->str());
    }
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
    if (fbopr->comp_node()) {
        auto cnt = fbopr->comp_node()->size();
        cg::OperatorNodeConfig::CompNodeArray comp_node_arr(cnt);
        for (size_t i = 0; i < cnt; i++) {
            CompNode cn{};
            auto node = fbopr->comp_node()->Get(i);
            if (node) {
                cn = load_comp_node(node);
            }
            comp_node_arr[i] = cn;
        }
        config.comp_node_arr(comp_node_arr);
    }

    auto registry = OprRegistry::find_by_unversioned_id(fbopr->type_id());
    mgb_throw_if(!registry, SerializationError,
732 733 734
                 "failed to find opr with type %s, use python env "
                 "config.dump_registered_oprs() to get a dict that maps from "
                 "opr id to opr name",
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
                 std::to_string(fbopr->type_id()).c_str());

    // load inputs
    VarNodeArray inputs;
    if (fbopr->inputs()) {
        inputs.resize(fbopr->inputs()->size());
        for (size_t i = 0; i < inputs.size(); ++i) {
            inputs[i] = m_id2varnode.at(fbopr->inputs()->Get(i));
        }
    }

    // call loader
    auto opr = registry->loader(*this, inputs, config);

    // check opr type; note that:
    // 1. registry->type may be empty for dynamic opr loaders or legacy oprs
    // 2. due to some optimization, an opr may be replaced by ImmutableTensor
    mgb_assert(
            opr && (opr->dyn_typeinfo() == registry->type || !registry->type ||
                    opr->same_type<opr::ImmutableTensor>()),
            "got_type=%s expected_type=%s",
            opr ? opr->dyn_typeinfo()->name : nullptr, registry->type->name);
    // record output vars; read output names
    size_t i = 0;
    for (auto ovar : opr->output()) {
        if (!ovar->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) {
            m_id2varnode.push_back(ovar);
            if (fbopr->output_name()) {
                ovar->name(fbopr->output_name()->Get(i++)->str());
            }
        }
    }

    opr->node_prop().attribute().priority = fbopr->priority();
}

GraphLoader::LoadResult GraphLoaderOSS::OprLoadContextImpl::load_oprs() {
    // load oprs
    const auto* oprs = m_loader->m_graph->oprs();
774 775 776 777 778 779 780 781 782
    {
        // inplace arith graph optimization is disabled during opr load
        // it tries to restore the same graph as it was dumped
        // see test TestSerializer2.LOGEXP for example
        GraphLoader::ScopedGraphOptDisabler _(m_graph);
        for (flatbuffers::uoffset_t i = 0; i < oprs->size(); ++i) {
            m_current_opr = oprs->Get(i);
            load_single_opr(m_current_opr);
        }
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
    }

    // batched loading device values
    m_device_value_loader.apply();

    LoadResult ret;
    ret.graph = m_graph;
    ret.tensor_map = m_tensor_map;

    const auto* outputs = m_loader->m_graph->output_vars_idx();
    ret.output_var_list.resize(outputs->size());
    for (flatbuffers::uoffset_t i = 0; i < outputs->size(); i++) {
        auto out = outputs->Get(i);
        auto var = m_id2varnode.at(out->compact_id());
        ret.output_var_map[var->name()] = var;
        ret.output_var_map_id[out->original_id()] = var;
        ret.output_var_list[i] = var;
    }
    mgb_assert(m_cur_shared_tensor_idx == m_loader->m_shared_tensor_map.size());
    return ret;
}

GraphLoader::LoadResult GraphLoaderOSS::load(const LoadConfig& config,
                                                   bool rewind) {
    mgb_assert(m_file);
    m_cur_load_config = &config;
    if (rewind) {
        m_file->rewind();
    }
    uint32_t magic;
    m_file->read(&magic, sizeof(magic));
    mgb_throw_if(magic != MGB_MAGIC, SerializationError,
815
                 "wrong magic: wanted %#08x, actual %#08x (not a invalid fbs "
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
                 "model?)",
                 MGB_MAGIC, magic);
    m_file->skip(4);

    uint64_t offset_to_fbs;
    m_file->read(&offset_to_fbs, sizeof(offset_to_fbs));
    auto tensor_begin = m_file->tell();
    // Skip tensor data
    m_file->skip(offset_to_fbs);

    // Read fbs::Graph
    uint32_t size;
    m_file->read(&size, sizeof(size));
    m_graph_buf = m_file->read_shared(size);

    // Rewind back to tensor data
    m_file->rewind();
    m_file->skip(tensor_begin);

    mgb_throw_if(!fbs::GraphBufferHasIdentifier(m_graph_buf.data()),
836
                 SerializationError, "invalid fbs model");
837 838 839 840 841 842 843 844 845 846 847 848 849

    {
        flatbuffers::Verifier verifier(
                static_cast<const uint8_t*>(m_graph_buf.data()),
                m_graph_buf.size());
        mgb_throw_if(!fbs::VerifyGraphBuffer(verifier), SerializationError,
                     "model verification failed (invalid or corrupted model?)");
    }

    m_graph = fbs::GetGraph(m_graph_buf.data());
    m_mgb_version = m_graph->mgb_version();
    if (m_graph->mgb_version() > MGB_VERSION) {
        mgb_log_warn(
850
                "loading model from future runtime: version=%u "
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
                "model_version=%u",
                MGB_VERSION, m_graph->mgb_version());
    }
    if (!m_graph_hash) {
        m_graph_hash = m_graph->hash();
        mgb_assert(m_graph_hash,
                   "invalid graph hash; maybe error "
                   "occurred during graph dump");
    } else {
        mgb_assert(m_graph_hash == m_graph->hash(),
                   "A GraphLoader instance can be used to load only one graph,"
                   " since the tensor values are shared. Previous graph hash "
                   "is 0x%llx, current graph hash is 0x%llx.",
                   static_cast<unsigned long long>(m_graph_hash),
                   static_cast<unsigned long long>(m_graph->hash()));
    }

    if (m_shared_tensor_map.empty()) {
        m_shared_tensor_map.resize(m_graph->nr_shared_tensor());
    } else {
        mgb_assert(m_shared_tensor_map.size() == m_graph->nr_shared_tensor());
    }

    OprLoadContextImpl ctx{this, m_graph->mgb_version()};
    auto result = ctx.load_oprs();

877
    auto fbs_end = tensor_begin + offset_to_fbs + sizeof(size) + size;
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
    auto cur = m_file->tell();
    mgb_assert(fbs_end > cur);
    // Skip to Graph end
    m_file->skip(fbs_end - cur);
    return result;
}

std::unique_ptr<GraphDumper> make_fbs_dumper(std::unique_ptr<OutputFile> file) {
    return std::make_unique<GraphDumperOSS>(std::move(file));
}

std::unique_ptr<GraphLoader> make_fbs_loader(std::unique_ptr<InputFile> file) {
    return std::make_unique<GraphLoaderOSS>(std::move(file));
}

bool is_fbs_file(InputFile& file) {
    uint64_t magic_with_reserved = 0;
    file.read(&magic_with_reserved, sizeof(magic_with_reserved));
    file.skip(-sizeof(magic_with_reserved));
    return magic_with_reserved == MGB_MAGIC;
}

}  // namespace serialization
}  // namespace mgb

903
#endif