algos.cpp 21.7 KB
Newer Older
1 2 3 4 5 6 7 8
/**
 * \file dnn/src/x86/conv_bias/int8/algos.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16
 */

#include "src/x86/conv_bias/int8/algos.h"
#include "src/common/opr_delegate.h"
#include "src/common/utils.h"
#include "src/fallback/convolution/img2col_helper.h"
17
#include "src/x86/conv_bias/int8/algo_usable_preferred.h"
18 19
#include "src/x86/conv_bias/int8/avx2_chanwise_stride1.h"
#include "src/x86/conv_bias/int8/avx2_chanwise_stride2.h"
20 21 22 23 24 25
#include "src/x86/conv_bias/int8/avx2_direct_conv_stride1.h"
#include "src/x86/conv_bias/int8/avx2_direct_conv_stride2.h"
#include "src/x86/conv_bias/opr_impl.h"
#include "src/x86/conv_bias/postprocess_helper.h"
#include "src/x86/handle.h"
#include "src/x86/utils.h"
26
#if MEGDNN_X86_WITH_MKL_DNN
27 28 29 30 31
#include <mkldnn.hpp>
#endif

#include <cstring>

32
#if MEGDNN_X86_WITH_MKL_DNN
33 34 35 36 37
using namespace dnnl;
#endif
using namespace megdnn;
using namespace x86;

38 39 40
bool ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::usable(
        FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param,
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
41
    return chanwise_avx2_stride1_qint8_usable(param);
42 43 44 45 46 47 48 49
}

WorkspaceBundle ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::get_bundle(
        const NCBKernSizeParam& param) {
    size_t nr_threads = param.nr_threads;
    size_t IH2, IW2, OH2, OW2;
    size_t src_size = 0, dst_size = 0, int32_temp = 0;

50
    get_rectified_size(param, IH2, IW2, OH2, OW2);
51

52
    if (need_src_copy(param)) {
53 54
        src_size = IH2 * IW2 * sizeof(int8_t) * nr_threads;
    }
55
    if (need_dst_copy(param)) {
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
        dst_size = OH2 * OW2 * param.dst_type.size() * nr_threads;
    }
    bool dst_need_convert = param.dst_type.enumv() == DTypeEnum::QuantizedS8;

    if (dst_need_convert) {
        int32_temp = OH2 * OW2 * sizeof(int32_t) * nr_threads;
    }
    return dst_need_convert
                   ? WorkspaceBundle(nullptr, {src_size, dst_size, int32_temp})
                   : WorkspaceBundle(nullptr, {src_size, dst_size});
}

size_t ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::get_workspace(
        FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
    return get_bundle(param).total_size_in_bytes();
}

SmallVector<fallback::ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::get_kimpls(
        const NCBKernSizeParam& param) const {
    auto bundle = get_bundle(param);
    return avx2_chanwise_stride1::get_kimpls(param, bundle);
}

80 81 82 83 84
bool ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::is_preferred(
        FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
    return chanwise_avx2_stride1_qint8_preferred(param);
}

85 86 87
bool ConvBiasImpl::AlgoChanWiseAvx2Stride2Qint8::usable(
        FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param,
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
88
    return chanwise_avx2_stride2_qint8_usable(param);
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
}

WorkspaceBundle ConvBiasImpl::AlgoChanWiseAvx2Stride2Qint8::get_bundle(
        const NCBKernSizeParam& param) {
    size_t nr_threads = param.nr_threads;
    size_t IH2, IW2, OH2, OW2;
    size_t src_size = 0, dst_size = 0, int32_temp = 0;

    get_rectified_size(param, IH2, IW2, OH2, OW2);

    if (need_src_copy(param)) {
        src_size = IH2 * IW2 * sizeof(int8_t) * nr_threads;
    }
    if (need_dst_copy(param)) {
        dst_size = OH2 * OW2 * param.dst_type.size() * nr_threads;
    }
    bool dst_need_convert = param.dst_type.enumv() == DTypeEnum::QuantizedS8;

    if (dst_need_convert) {
        int32_temp = OH2 * OW2 * sizeof(int32_t) * nr_threads;
    }
    return dst_need_convert
                   ? WorkspaceBundle(nullptr, {src_size, dst_size, int32_temp})
                   : WorkspaceBundle(nullptr, {src_size, dst_size});
}

size_t ConvBiasImpl::AlgoChanWiseAvx2Stride2Qint8::get_workspace(
        FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
    return get_bundle(param).total_size_in_bytes();
}

SmallVector<fallback::ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoChanWiseAvx2Stride2Qint8::get_kimpls(
        const NCBKernSizeParam& param) const {
    auto bundle = get_bundle(param);
    return avx2_chanwise_stride2::get_kimpls(param, bundle);
}

127 128 129 130 131
bool ConvBiasImpl::AlgoChanWiseAvx2Stride2Qint8::is_preferred(
        FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
    return chanwise_avx2_stride2_qint8_preferred(param);
}

132 133 134
bool ConvBiasImpl::AlgoDirectAvx2Stride1Int8::usable(
        FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param,
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
135
    return direct_avx2_stride1_int8_usable(param);
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
}

WorkspaceBundle ConvBiasImpl::AlgoDirectAvx2Stride1Int8::get_bundle(
        const NCBKernSizeParam& param) {
    auto&& fm = param.filter_meta;
    size_t N = param.n;
    size_t IC = fm.icpg;
    size_t OC = fm.ocpg;
    size_t IH = param.isz[0];
    size_t IW = param.isz[1];
    size_t OH = param.osz[0];
    size_t OW = param.osz[1];
    size_t FH = fm.spatial[0];
    size_t FW = fm.spatial[1];
    size_t GROUP = fm.group;
    size_t IC_STEP = 2, OC_STEP = 4, IW_STEP = 8;

    size_t pad_h = fm.padding[0];
    size_t pad_w = fm.padding[1];
    size_t src_size = 0, filter_size = 0;

    //! pack filter, pack src
    filter_size = GROUP * round_up(OC, OC_STEP) * round_up(IC, IC_STEP) * FH *
                  FW * sizeof(int16_t);
    src_size = N * GROUP * div_ceil(IC, IC_STEP) * (IH + 2 * pad_h) *
               round_up(IW + 2 * pad_w, IW_STEP) * 2 * sizeof(int8_t);

    bool need_post_process = param.dst_type.enumv() == DTypeEnum::QuantizedS8;
    if (need_post_process) {
        size_t dst_tmp = N * GROUP * OC * OW * OH * sizeof(int32_t);
        return WorkspaceBundle(nullptr, {src_size, filter_size, dst_tmp});
    } else {
        return WorkspaceBundle(nullptr, {src_size, filter_size});
    }
}

size_t ConvBiasImpl::AlgoDirectAvx2Stride1Int8::get_workspace(
        FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
    return get_bundle(param).total_size_in_bytes();
}

SmallVector<fallback::ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoDirectAvx2Stride1Int8::get_kimpls(
        const NCBKernSizeParam& param) const {
    auto bundle = get_bundle(param);
    return direct_conv_avx2_stride1::get_kimpls(param, bundle);
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
bool ConvBiasImpl::AlgoDirectAvx2Stride1Int8::is_preferred(
        FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
    return direct_avx2_stride1_int8_preferred(param);
}

/* ===================== avx2 int8 stride 2 ===================== */
bool ConvBiasImpl::AlgoAVX2DirectConvStride2::usable(
        FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param,
        AlgoSelectionStrategy) const {
    return direct_avx2_stride2_int8_usable(param);
}

WorkspaceBundle ConvBiasImpl::AlgoAVX2DirectConvStride2::get_bundle(
        const NCBKernSizeParam& param) {
    auto&& fm = param.filter_meta;
    size_t N = param.n;
    size_t IC = fm.icpg;
    size_t OC = fm.ocpg;
    size_t IH = param.isz[0];
    size_t IW = param.isz[1];
    size_t OH = param.osz[0];
    size_t OW = param.osz[1];
    size_t FH = fm.spatial[0];
    size_t FW = fm.spatial[1];
    size_t GROUP = fm.group;
    size_t IC_STEP = 2, OC_STEP = 4;

    size_t pad_h = fm.padding[0];
    size_t pad_w = fm.padding[1];
    size_t src_size = 0, filter_size = 0;

    //! pack filter, pack src
    filter_size = GROUP * round_up(OC, OC_STEP) * round_up(IC, IC_STEP) * FH *
                  FW * sizeof(int16_t);
    //! avx256 iw max offset 32, caused by w_remain < 16
    src_size = N * GROUP * div_ceil(IC, IC_STEP) * (IH + 2 * pad_h) *
                       (IW + 2 * pad_w) * 2 * sizeof(int8_t) +
               32;
    bool need_post_process = param.dst_type.enumv() == DTypeEnum::QuantizedS8;
    if (need_post_process) {
        size_t dst_tmp = N * GROUP * OC * OW * OH * sizeof(int32_t);
        return WorkspaceBundle(nullptr, {src_size, filter_size, dst_tmp});
    } else {
        return WorkspaceBundle(nullptr, {src_size, filter_size});
    }
}

size_t ConvBiasImpl::AlgoAVX2DirectConvStride2::get_workspace(
        FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
    return get_bundle(param).total_size_in_bytes();
}

SmallVector<fallback::ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoAVX2DirectConvStride2::get_kimpls(
        const NCBKernSizeParam& param) const {
    auto bundle = get_bundle(param);
    return direct_conv_avx2_stride2::get_kimpls(param, bundle);
}

bool ConvBiasImpl::AlgoAVX2DirectConvStride2::is_preferred(
        FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
    return direct_avx2_stride2_int8_preferred(param);
}

248
#if MEGDNN_X86_WITH_MKL_DNN
249 250 251
bool ConvBiasImpl::AlgoMkldnnQint8::usable(FallbackConvBiasImpl*,
                                           const NCBKernSizeParam& param,
                                           AlgoSelectionStrategy) const {
252
    return mkldnn_qint8_usable(param);
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
}

WorkspaceBundle ConvBiasImpl::AlgoMkldnnQint8::get_bundle(
        const NCBKernSizeParam& param) {
    if (!is_supported(SIMDType::VNNI)) {
        size_t N = param.n;
        size_t IC = param.filter_meta.icpg;
        size_t IH = param.isz[0];
        size_t IW = param.isz[1];

        size_t size = (N * IC * IH * IW) * sizeof(uint8_t);
        return WorkspaceBundle{nullptr, {size}};
    } else {
        return WorkspaceBundle{nullptr, {0}};
    }
}

270 271 272 273 274 275 276
#define REORDER_MEMORY(megdnn_memory, reorder_memory)                      \
    do {                                                                   \
        auto reorder_pd = reorder::primitive_desc(                         \
                eng_mkldnn, megdnn_memory.get_desc(), eng_mkldnn,          \
                reorder_memory.get_desc());                                \
        auto reorder_exe = reorder(reorder_pd);                            \
        reorder_exe.execute(stream_mkldnn, megdnn_memory, reorder_memory); \
277 278 279
    } while (0)

void ConvBiasImpl::AlgoMkldnnQint8::kern_mkldnn_s8x8x32(
280
        const NCBKernParam& param, const NCBKernIndex& ncb_index) {
281 282
    UNPACK_CONV_F32_NCB_KERN_SIZES(param);
    MEGDNN_MARK_USED_VAR(N);
283 284
    size_t group_id = ncb_index.ndrange_id[0];
    size_t batch_id = ncb_index.ndrange_id[1];
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    auto x86_handle = static_cast<HandleImpl*>(inplace_cpu_handle().get());
    megdnn_assert(x86_handle != nullptr, "x86 handle can not be null");
    auto eng_mkldnn = x86_handle->mkldnn_engine();
    auto stream_mkldnn = x86_handle->mkldnn_stream();

    memory::dims src_shape = {1, IC, IH, IW};
    memory::dims weight_shape = {OC, IC, FH, FW};
    memory::dims dst_shape = {1, OC, OH, OW};
    memory::dims strides_shape = {SH, SW};
    memory::dims padding_shape = {PH, PW};

    auto megdnn_src_md = memory::desc({src_shape}, memory::data_type::s8,
                                      memory::format_tag::nchw);
    auto megdnn_weight_md = memory::desc({weight_shape}, memory::data_type::s8,
                                         memory::format_tag::oihw);
    auto megdnn_dst_md = memory::desc({dst_shape}, memory::data_type::s32,
                                      memory::format_tag::nchw);

303 304 305 306 307
    auto megdnn_weight_memory =
            memory(megdnn_weight_md, eng_mkldnn,
                   const_cast<void*>(param.filter<void>(group_id)));
    int8_t* src = const_cast<int8_t*>(param.src<int8_t>(batch_id, group_id));
    int32_t* dst = param.dst<int32_t>(batch_id, group_id);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

    auto megdnn_src_memory =
            memory(megdnn_src_md, eng_mkldnn, static_cast<void*>(src));

    auto megdnn_dst_memory =
            memory(megdnn_dst_md, eng_mkldnn, static_cast<void*>(dst));
    // Intel mkldnn compute s8*s8-->s32 convolution in none vnni machine is
    // not crect, this based https://github.com/intel/mkl-dnn/issues/375. In
    // the vnni machine s8*s8--->s32 must use reorder, can't use the megdnn
    // origin ptr, but u8*s8--->s32,mkldnn can use megdnn origin ptr
    // directly, if machine does not support vnni, there is a naive mkl-dnn
    // implement
    if (is_supported(SIMDType::VNNI)) {
        auto conv_src_md = memory::desc({src_shape}, memory::data_type::s8,
                                        memory::format_tag::any);
        auto conv_weights_md = memory::desc(
                {weight_shape}, memory::data_type::s8, memory::format_tag::any);
        auto conv_dst_md = memory::desc({dst_shape}, memory::data_type::s32,
                                        memory::format_tag::any);

        auto conv_desc = convolution_forward::desc(
                prop_kind::forward, algorithm::convolution_auto, conv_src_md,
                conv_weights_md, conv_dst_md, strides_shape, padding_shape,
                padding_shape);

        auto conv_prim_desc =
                convolution_forward::primitive_desc(conv_desc, eng_mkldnn);

        auto conv = convolution_forward(conv_prim_desc);

338 339 340 341
        memory conv_src_memory = memory(conv_prim_desc.src_desc(), eng_mkldnn);
        memory conv_weight_memory =
                memory(conv_prim_desc.weights_desc(), eng_mkldnn);
        memory conv_dst_memory;
342 343 344 345 346 347 348 349 350 351 352 353 354

        REORDER_MEMORY(megdnn_src_memory, conv_src_memory);
        REORDER_MEMORY(megdnn_weight_memory, conv_weight_memory);

        if (megdnn_dst_memory.get_desc() != conv_prim_desc.dst_desc()) {
            conv_dst_memory = memory(conv_prim_desc.dst_desc(), eng_mkldnn);
        } else {
            conv_dst_memory = megdnn_dst_memory;
        }

        conv.execute(stream_mkldnn, {{DNNL_ARG_SRC, conv_src_memory},
                                     {DNNL_ARG_WEIGHTS, conv_weight_memory},
                                     {DNNL_ARG_DST, conv_dst_memory}});
355
        REORDER_MEMORY(conv_dst_memory, megdnn_dst_memory);
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
        stream_mkldnn.wait();
    } else {
        std::vector<primitive> net;
        std::vector<std::unordered_map<int, memory>> net_args;

        uint8_t* const_128 = static_cast<uint8_t*>(param.workspace_ptr);
        std::memset(const_128, 128u, get_bundle(param).total_size_in_bytes());

        auto megdnn_128_md = memory::desc({src_shape}, memory::data_type::u8,
                                          memory::format_tag::nchw);
        auto megdnn_128_memory = memory(megdnn_128_md, eng_mkldnn,
                                        static_cast<void*>(const_128));

        // 1.compute the conv 128 * weight(s8) -> s32
        auto conv_128_dst_memory = memory(megdnn_dst_md, eng_mkldnn);

        auto conv_desc1 = convolution_forward::desc(
                prop_kind::forward, algorithm::convolution_auto, megdnn_128_md,
                megdnn_weight_md, megdnn_dst_md, strides_shape, padding_shape,
                padding_shape);

        auto conv_prim_desc1 =
                convolution_forward::primitive_desc(conv_desc1, eng_mkldnn);

        net.push_back(convolution_forward(conv_prim_desc1));
        net_args.push_back({{DNNL_ARG_SRC, megdnn_128_memory},
                            {DNNL_ARG_WEIGHTS, megdnn_weight_memory},
                            {DNNL_ARG_DST, conv_128_dst_memory}});

        // 2.compute the conv (src+128)(u8) *weight(s8) --> s32
        //(1) src+128
        memory conv_src_add_128_memory = megdnn_128_memory;
        auto sum_128_desc = sum::primitive_desc(
                conv_src_add_128_memory.get_desc(), {1.0f, 1.0f},
                {megdnn_128_md, megdnn_src_md}, eng_mkldnn);

        net.push_back(sum(sum_128_desc));
        net_args.push_back({{DNNL_ARG_MULTIPLE_SRC, megdnn_128_memory},
                            {DNNL_ARG_MULTIPLE_SRC + 1, megdnn_src_memory},
                            {DNNL_ARG_DST, conv_src_add_128_memory}});
        //(2) conv (src+128)(u8) * weight(s8) --> s32
        auto conv_desc2 = convolution_forward::desc(
                prop_kind::forward, algorithm::convolution_auto, megdnn_128_md,
                megdnn_weight_md, megdnn_dst_md, strides_shape, padding_shape,
                padding_shape);

        auto conv_prim_desc2 =
                convolution_forward::primitive_desc(conv_desc2, eng_mkldnn);

        net.push_back(convolution_forward(conv_prim_desc2));
        net_args.push_back({{DNNL_ARG_SRC, conv_src_add_128_memory},
                            {DNNL_ARG_WEIGHTS, megdnn_weight_memory},
                            {DNNL_ARG_DST, megdnn_dst_memory}});
        // 3.sub the 128*weight
        auto sub_128_desc =
                sum::primitive_desc(megdnn_dst_md, {1.0f, -1.0f},
                                    {megdnn_dst_md, megdnn_dst_md}, eng_mkldnn);

        net.push_back(sum(sub_128_desc));
        net_args.push_back({{DNNL_ARG_MULTIPLE_SRC, megdnn_dst_memory},
                            {DNNL_ARG_MULTIPLE_SRC + 1, conv_128_dst_memory},
                            {DNNL_ARG_DST, megdnn_dst_memory}});
        // 4 excute
        for (size_t i = 0; i < net.size(); ++i) {
            net.at(i).execute(stream_mkldnn, net_args.at(i));
        }

        stream_mkldnn.wait();
    }
}
#undef REORDER_MEMORY

428 429 430 431 432
bool ConvBiasImpl::AlgoMkldnnQint8::is_preferred(
        FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
    return mkldnn_qint8_preferred(param);
}

433 434 435 436
/* ===================== mkldnn qint8 matmul algo ===================== */
bool ConvBiasImpl::AlgoMkldnnMatmulQint8::usable(FallbackConvBiasImpl*,
                                                 const NCBKernSizeParam& param,
                                                 AlgoSelectionStrategy) const {
437
    return mkldnn_matmul_qint8_usable(param);
438
}
439

440 441
bool ConvBiasImpl::AlgoMkldnnMatmulQint8::is_preferred(
        FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
442
    return mkldnn_matmul_qint8_preferred(param);
443
}
444

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
WorkspaceBundle ConvBiasImpl::AlgoMkldnnMatmulQint8::get_bundle(
        const NCBKernSizeParam& param) {
    UNPACK_CONV_F32_NCB_KERN_SIZES(param);
    megdnn_ignore(N);
    megdnn_ignore(OC);
    auto IW2 = IH + 2 * PH;
    auto IH2 = IW + 2 * PW;
    bool can_matrix_mul_direct =
            (FH == 1 && FW == 1 && SH == 1 && SW == 1 && PH == 0 && PW == 0);
    // temp space to store padding-free src (with 4 extra floats)
    // temp space to store unrolled matrix (with 4 extra floats)
    // workspace for matrix mul opr
    size_t part0, part1, part2;
    if (can_matrix_mul_direct) {
        part0 = part1 = 0;
    } else {
        part0 = (IC * IH2 * IW2 + 4) * sizeof(int8_t);
        part1 = (IC * FH * FW * OH * OW + 4) * sizeof(int8_t);
    }
    {
        TensorLayout A_, B_, C_;
        A_ = TensorLayout({OC, IC * FH * FW}, dtype::Int8());
        B_ = TensorLayout({IC * FH * FW, OH * OW}, dtype::Int8());
        C_ = TensorLayout({OC, OH * OW}, dtype::Int32());
        part2 = get_matmul_opr()->get_workspace_in_bytes(A_, B_, C_);
    }
    return {nullptr, {part0, part1, part2}};
}
473

474 475 476 477 478 479
MatrixMul* ConvBiasImpl::AlgoMkldnnMatmulQint8::get_matmul_opr() {
    static CpuOprDelegationStorage<> storage;
    return storage.get<MatrixMul>();
}

void ConvBiasImpl::AlgoMkldnnMatmulQint8::kern_mkldnn_matmul_s8x8x32(
480
        const NCBKernParam& param, const NCBKernIndex& ncb_index) {
481 482 483
    UNPACK_CONV_F32_NCB_KERN_SIZES(param);
    auto IH2 = IH + 2 * PH;
    auto IW2 = IW + 2 * PW;
484
    size_t group_id = ncb_index.ndrange_id[0];
485 486 487 488 489
    bool is_xcorr = !param.filter_meta.should_flip;
    auto bundle = get_bundle(param);
    bundle.set(param.workspace_ptr);

    for (size_t n = 0; n < N; ++n) {
490 491
        int8_t* src = const_cast<int8_t*>(param.src<int8_t>(n, group_id));
        int32_t* dst = param.dst<int32_t>(n, group_id);
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
        int8_t *B, *src2;
        if (FH == 1 && FW == 1 && SH == 1 && SW == 1 && PH == 0 && PW == 0) {
            // special case: 1x1
            B = src;
        } else {
            src2 = static_cast<int8_t*>(bundle.get(0));
            // copy src to src2;
            int8_t* src2_ptr = src2;
            const int8_t* src_ptr = src;
            rep(ic, IC) {
                if (PH != 0) {
                    std::memset(src2_ptr, 0, sizeof(int8_t) * PH * IW2);
                    src2_ptr += PH * IW2;
                }
                rep(ih, IH) {
                    if (PW != 0)
                        rep(pw, PW) * (src2_ptr++) = 0.0f;
                    std::memcpy(src2_ptr, src_ptr, sizeof(int8_t) * IW);
                    src2_ptr += IW;
                    src_ptr += IW;
                    if (PW != 0)
                        rep(pw, PW) * (src2_ptr++) = 0.0f;
                }
                if (PH != 0) {
                    std::memset(src2_ptr, 0, sizeof(int8_t) * PH * IW2);
                    src2_ptr += PH * IW2;
                }
            }

            B = static_cast<int8_t*>(bundle.get(1));
            if (SH == 1 && SW == 1) {
                if (is_xcorr) {
                    img2col<true>(src2, B, OC, OH, OW, IC, IH2, IW2, FH, FW);
                } else {
                    img2col<false>(src2, B, OC, OH, OW, IC, IH2, IW2, FH, FW);
                }
            } else {
                if (is_xcorr) {
                    img2col_stride<true>(src2, B, OC, OH, OW, IC, IH2, IW2, FH,
                                         FW, SH, SW);
                } else {
                    img2col_stride<false>(src2, B, OC, OH, OW, IC, IH2, IW2, FH,
                                          FW, SH, SW);
                }
            }
        }
        {
            TensorND A_, B_, C_;
            A_.layout = TensorLayout({OC, IC * FH * FW}, dtype::Int8());
541
            A_.raw_ptr = const_cast<int8_t*>(param.filter<int8_t>(group_id));
542 543 544 545 546 547 548 549 550 551 552 553 554 555
            B_.layout = TensorLayout({IC * FH * FW, OH * OW}, dtype::Int8());
            B_.raw_ptr = B;
            C_.layout = TensorLayout({OC, OH * OW}, dtype::Int32());
            C_.raw_ptr = dst;
            Workspace workspace(static_cast<dt_byte*>(bundle.get(2)),
                                bundle.get_size(2));
            get_matmul_opr()->exec(A_, B_, C_, workspace);
        }
    }
}

#endif

// vim: syntax=cpp.doxygen