topk_radix.cu 24.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
/**
 * \file dnn/src/cuda/topk/topk_radix.cu
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "./topk_radix.cuh"
#include "src/cuda/cub/device/device_scan.cuh"
#include "src/cuda/cuda_shfl_compat.cuh"
#include "src/cuda/utils.cuh"

#include <algorithm>
#include <cmath>

#if __CUDACC_VER_MAJOR__ < 9
#pragma message "topk is a little slower on cuda earlier than 9.0"
// on cuda 9.0 and later, due to thread-divergent branches we should use
// __syncwarp; and I am too lazy to implement a correct legacy version, so just
// use __syncthreads instead for older cuda
#define __syncwarp __syncthreads
#endif

using namespace megdnn;
using namespace cuda;
using namespace topk;
using namespace internal;

namespace cuda_topk_impl {

const uint32_t WARP_SIZE = 32;

static __device__ __forceinline__ uint32_t u32_from_64_low(uint64_t x) {
    return x;
}
static __device__ __forceinline__ uint32_t u32_from_64_high(uint64_t x) {
    return x >> 32;
}

template <uint32_t x>
struct static_log2 {
    static const uint32_t val = static_log2<x / 2>::val + 1;
};
template <>
struct static_log2<1> {
    static const uint32_t val = 0;
};

template <uint32_t SIZE, typename T = uint32_t>
struct DeviceScanPackedItem;

template <typename T>
struct DeviceScanPackedItem<1, T> {
    __device__ __forceinline__ T load(T* data, uint32_t tid) {
        return data[tid];
    }

    __device__ __forceinline__ void store(T* data, uint32_t tid, uint32_t s) {
        data[tid] = s;
    }
};

template <>
struct DeviceScanPackedItem<4, uint8_t> {
    uint8_t d0, d1, d2, d3;
    __device__ __forceinline__ uint32_t load(uint8_t* data, uint32_t tid) {
        uint32_t item = reinterpret_cast<uint32_t*>(data)[tid];
        d3 = item >> 24;
        d2 = (item >> 16) & 0xFF;
        d1 = (item >> 8) & 0xFF;
        d0 = item & 0xFF;
        return d0 + d1 + d2 + d3;
    }

    __device__ __forceinline__ void store(uint8_t* data, uint32_t tid,
                                          uint32_t s) {
        uint8_t o3 = s, o2 = o3 - d3, o1 = o2 - d2, o0 = o1 - d1;
        reinterpret_cast<uint32_t*>(data)[tid] =
                (o3 << 24) | (o2 << 16) | (o1 << 8) | o0;
    }
};

//! inclusive scan within a warp using register shuffle
template <uint32_t SIZE>
__device__ __forceinline__ uint32_t device_scan_shfl_core(uint32_t s,
                                                          uint32_t tid) {
    static const uint32_t SIZE_LOG2 = static_log2<SIZE>::val;

    uint32_t self_lane = tid % SIZE;
#pragma unroll
    for (uint32_t step_log2 = 1; step_log2 <= SIZE_LOG2; ++step_log2) {
        uint32_t from_lane = (self_lane & ~((1u << step_log2) - 1)) +
                             ((1 << (step_log2 - 1)) - 1);
        uint32_t valid_mask = (from_lane >= self_lane) - 1;
        uint32_t s_below = __shfl_up(s, self_lane - from_lane, SIZE);
        s += s_below & valid_mask;
    }
    return s;
}

/*!
 * \brief compute inplace inclusive prefix sum of \p data
 *
 * Note: no synchronization at the end
 */
template <uint32_t SIZE, uint32_t NR_SHARD>
__device__ __forceinline__ void device_scan(uint32_t* data, uint32_t tid,
                                            uint32_t shard) {
    const uint32_t NR_WARP = SIZE / NR_SHARD / WARP_SIZE;
#if __cplusplus > 199711L
    static_assert(NR_WARP <= WARP_SIZE || (NR_WARP & (NR_WARP - 1)),
                  "bad params");
#endif

    __syncthreads();
    DeviceScanPackedItem<NR_SHARD> packed_item;

    uint32_t s = packed_item.load(data, tid);
    s = device_scan_shfl_core<WARP_SIZE>(s, tid);

    // sync between warps
    __shared__ uint32_t warp_sums_storage[NR_SHARD][NR_WARP];
    uint32_t warp_id = tid / WARP_SIZE;
    uint32_t* warp_sums = warp_sums_storage[shard];
    if ((tid & (WARP_SIZE - 1)) == WARP_SIZE - 1) {
        warp_sums[warp_id] = s;
    }
    __syncthreads();

    for (uint32_t i = 0; i < warp_id; ++i) {
        s += warp_sums[i];
    }

    packed_item.store(data, tid, s);
}

template <uint32_t PACK_SIZE, typename T>
__device__ __forceinline__ void device_scan_packed_accu32(T* data,
                                                          uint32_t tid) {
    DeviceScanPackedItem<PACK_SIZE, T> scan_pack;
    __syncwarp();
    uint32_t sum = scan_pack.load(data, tid);
    sum = device_scan_shfl_core<WARP_SIZE>(sum, tid);
    scan_pack.store(data, tid, sum);
    __syncwarp();
}

namespace kth {

const uint32_t BUCKET_BITS = 8, NR_BUCKET = 1 << BUCKET_BITS,
               LOCAL_CNT_SHARD = 16, BLOCK_DIM = NR_BUCKET * 4;

template <uint32_t v>
struct enforce_const_u32 {
    static const uint32_t val = v;
};

/*!
 * \brief compute scattered histogram for the whole input
 *
 * launch config: grid(X, batch), thread(BLOCK_DIM)
 *
 * Keys not starting with given prefix would be treated as max
 *
 * \param[in] input [batch, length]
 * \param[out] buckets [batch, X, NR_BUCKET]
 */
template <typename ctype, bool prefix_valid, uint32_t shift>
static __global__ void compute_histogram(const ctype* input,
                                         uint32_t* bucket_cnt, uint32_t length,
                                         int32_t lda, uint32_t* prefix_ptr) {
    // note that this layout eliminates bank conflict
    __shared__ uint32_t local_cnt[NR_BUCKET][LOCAL_CNT_SHARD];
    int32_t batch = blockIdx.y;
    input += batch * lda;
    bucket_cnt += (batch * gridDim.x + blockIdx.x) * NR_BUCKET;

    uint32_t prefix;
    if (prefix_valid) {
        prefix = prefix_ptr[batch];
    }

    {
        // init local_cnt
        uint32_t* p = &local_cnt[0][0];
        for (uint32_t i = threadIdx.x; i < LOCAL_CNT_SHARD * NR_BUCKET;
             i += BLOCK_DIM) {
            p[i] = 0;
        }
        __syncthreads();
    }

    {
        // accumulate
        uint32_t i = blockIdx.x * BLOCK_DIM + threadIdx.x,
                 stride = BLOCK_DIM * gridDim.x;
        uint32_t* dst = &local_cnt[0][threadIdx.x % LOCAL_CNT_SHARD];
        while (i < length) {
            uint32_t key = RadixConverter<ctype>::to_radix(input[i]);
            if (prefix_valid) {
                const uint32_t mask =
                        ((~0u) << ((prefix_valid ? shift : 0) + BUCKET_BITS));
                key |= ((key & enforce_const_u32<mask>::val) == prefix) - 1;
            }
            uint32_t idx = (key >> shift) & ((1 << BUCKET_BITS) - 1);
            atomicAdd(dst + idx * LOCAL_CNT_SHARD, 1);
            i += stride;
        }
    }
    __syncthreads();

    if (threadIdx.x < NR_BUCKET) {
        uint32_t s = 0;
#pragma unroll
        for (int i = 0; i < LOCAL_CNT_SHARD; ++i) {
            s += local_cnt[threadIdx.x][(i + threadIdx.x) % LOCAL_CNT_SHARD];
        }
        bucket_cnt[threadIdx.x] = s;
    }
}

/*!
 * \brief update the values in \p prefix to k'th value in according to bucket
 * count, and update \p k
 *
 * launch config: grid(batch), thread(NR_BUCKET)
 */
template <bool first, bool last, uint32_t shift, typename ctype>
static __global__ void update_prefix_and_k(const uint32_t* bucket_cnt,
                                           uint32_t* prefix, uint32_t* k,
                                           uint32_t k_init,
                                           uint32_t bucket_sharding_size,
                                           ctype* result) {
    __shared__ uint32_t cumsum_bucket_cnt[NR_BUCKET + 1];
    uint32_t batch = blockIdx.x;
    bucket_cnt += batch * bucket_sharding_size * NR_BUCKET;

    uint32_t sum = 0;
    for (uint32_t i = 0; i < bucket_sharding_size; ++i) {
        sum += bucket_cnt[i * NR_BUCKET + threadIdx.x];
    }
    if (!threadIdx.x) {
        cumsum_bucket_cnt[0] = 0;
    }
    const uint32_t i = threadIdx.x + 1;
    cumsum_bucket_cnt[i] = sum;

    device_scan<NR_BUCKET, 1>(cumsum_bucket_cnt + 1, threadIdx.x, 0);
    __syncthreads();

    uint32_t kv = first ? k_init : k[batch];
    if ((cumsum_bucket_cnt[i] >= kv) & (cumsum_bucket_cnt[i - 1] < kv)) {
        uint32_t b = (i - 1) << shift;
        if (first) {
            prefix[batch] = b;
        } else if (last) {
            result[batch] =
                    RadixConverter<ctype>::from_radix(prefix[batch] | b);
        } else {
            prefix[batch] |= b;
        }
        if (!last) {
            k[batch] = kv - cumsum_bucket_cnt[i - 1];
        }
    }

    if ((cumsum_bucket_cnt[NR_BUCKET] < kv) |
        (cumsum_bucket_cnt[i] != cumsum_bucket_cnt[i - 1] + sum)) {
        // impossible
        int* bad = 0x0;
        *bad = 23;
    }
}

static uint32_t get_grid_dim_x(uint32_t length) {
    return std::max<uint32_t>(length / (128 * BLOCK_DIM), 1);
}
}  // namespace kth

/*!
 * \brief select values smaller or larger than given threshold
 *
 * Note: we use register shuffle extensively to perform both reduce and scan.
 */
namespace select {

struct LessPred {
    template <typename ctype>
    __device__ __forceinline__ static bool cmp(ctype x, ctype y) {
        return x < y;
    }
};
struct GreaterPred {
    template <typename ctype>
    __device__ __forceinline__ static bool cmp(ctype x, ctype y) {
        return x > y;
    }
};

const uint32_t REDUCE_WARP_SIZE = 16, REDUCE_SIZE = WARP_SIZE * 4,
               REDUCE_SHARD = 64;
/*!
 * \brief reduce number of elements satisfying Pred in (N, M) mat to
 *      (N, ceil(M / REDUCE_SIZE))
 *
 * launch config: grid(X, batch),
 *                thread(REDUCE_WARP_SIZE, REDUCE_SHARD)
 *
 * Each block computes REDUCE_SHARD outputs
 */
template <typename ctype, class Pred>
static __global__ void kern_reduce_block_cnt(const ctype* input_data,
                                             const ctype* input_thresh,
                                             uint32_t length, int32_t lda,
                                             uint64_t* output,
                                             uint32_t output_width) {
    static const uint32_t BLOCK_DIM_X = REDUCE_WARP_SIZE,
                          BLOCK_DIM_Y = REDUCE_SHARD;
    uint32_t batch = blockIdx.y,
             out_col = blockIdx.x * BLOCK_DIM_Y + threadIdx.y,
             col_begin = out_col * REDUCE_SIZE,
             col_end = min(col_begin + REDUCE_SIZE, length),
             tid_local = threadIdx.x;

    if (out_col >= output_width) {
        return;
    }

    uint32_t thresh = RadixConverter<ctype>::to_radix(input_thresh[batch]);
    input_data += static_cast<int32_t>(batch) * lda;
    uint32_t sum_eq = 0, sum_lt = 0;
    for (uint32_t i = col_begin + tid_local; i < col_end; i += BLOCK_DIM_X) {
        uint32_t iv = RadixConverter<ctype>::to_radix(input_data[i]);
        sum_eq += iv == thresh;
        sum_lt += Pred::cmp(iv, thresh);
    }

#pragma unroll
    for (uint32_t step = REDUCE_WARP_SIZE / 2; step >= 1; step >>= 1) {
        sum_eq += __shfl_down(sum_eq, step, REDUCE_WARP_SIZE);
        sum_lt += __shfl_down(sum_lt, step, REDUCE_WARP_SIZE);
    }

    // reduce warp results to a single scalar
    if (!tid_local) {
        output[batch * output_width + out_col] =
                (static_cast<uint64_t>(sum_eq) << 32) | sum_lt;
    }
}

static MEGDNN_NOINLINE cudaError_t
invoke_cub_scan(const uint64_t* input, uint64_t* output, void* workspace,
                size_t& workspace_size, uint32_t size, cudaStream_t stream) {
    return cub::DeviceScan::InclusiveSum(workspace, workspace_size, input,
                                         output, size, stream);
}

static __global__ void kern_init_zero(uint64_t* dst) {
    dst[0] = 0;
}

/*!
 * \brief copy top-k values of each row from input to output
 *
 * launch config: grid(X, batch),
 *                thread(WARP_SIZE, COPY_SHARD)
 */
template <typename ctype, class Pred, int COPY_SHARD>
static __global__ void kern_copy(const ctype* input_data,
                                 const ctype* input_thresh,
                                 const uint64_t* scan, uint32_t scan_width,
                                 ctype* output_value, int32_t* output_idx,
                                 uint32_t length, uint32_t k, int32_t lda) {
#if __cplusplus > 199711L
    static_assert(REDUCE_SIZE < 256, "local_sum_storage can not be uint8_t");
#endif
    static const uint32_t BLOCK_DIM_X = WARP_SIZE, BLOCK_DIM_Y = COPY_SHARD;

    uint32_t scan_col = blockIdx.x * BLOCK_DIM_Y + threadIdx.y;

    if (scan_col >= scan_width) {
        return;
    }

    uint32_t batch = blockIdx.y,
             inp_col_begin = min(scan_col * REDUCE_SIZE, length),
             inp_col_length =
                     min(inp_col_begin + REDUCE_SIZE, length) - inp_col_begin,
             tid_local = threadIdx.x;
    uint32_t thresh = RadixConverter<ctype>::to_radix(input_thresh[batch]);
    input_data +=
            static_cast<int32_t>(batch) * lda + static_cast<int>(inp_col_begin);
    __shared__ uint8_t local_sum_storage[BLOCK_DIM_Y][2][REDUCE_SIZE + 4];
    uint8_t *local_sum_eq = local_sum_storage[threadIdx.y][0],
            *local_sum_lt = local_sum_storage[threadIdx.y][1];
    if (!tid_local) {
        local_sum_eq[3] = 0;
        local_sum_lt[3] = 0;
    }
    local_sum_eq += 4;
    local_sum_lt += 4;
    const uint32_t WORKLOAD = REDUCE_SIZE / WARP_SIZE;
#pragma unroll
    for (uint32_t j = 0; j < WORKLOAD; ++j) {
        uint32_t i = j * BLOCK_DIM_X + tid_local;
        if (i < inp_col_length) {
            uint32_t iv = RadixConverter<ctype>::to_radix(input_data[i]);
            local_sum_eq[i] = iv == thresh;
            local_sum_lt[i] = Pred::cmp(iv, thresh);
        } else {
            local_sum_eq[i] = 0;
            local_sum_lt[i] = 0;
        }
    }

    device_scan_packed_accu32<WORKLOAD, uint8_t>(local_sum_eq, tid_local);
    device_scan_packed_accu32<WORKLOAD, uint8_t>(local_sum_lt, tid_local);

    scan += batch * scan_width;
    uint64_t scan_prev_pack = scan[static_cast<int>(scan_col) - 1],
             k_offset_pack = scan_prev_pack - scan[-1],
             scan_self_pack = scan[scan_col] - scan_prev_pack;
#define unpack(name)                                    \
    uint32_t name##_eq = u32_from_64_high(name##_pack), \
             name##_lt = u32_from_64_low(name##_pack)
    unpack(k_offset);
    unpack(scan_self);
#undef unpack
    uint32_t allowed_eq = k - min(k, (u32_from_64_low(scan[scan_width - 1]) -
                                      u32_from_64_low(scan[-1]))),
             ls_lt_max = k - min(k_offset_lt, k),
             ls_eq_max = allowed_eq - min(allowed_eq, k_offset_eq);
    if ((scan_self_lt && ls_lt_max) || (scan_self_eq && ls_eq_max)) {
#pragma unroll
        for (uint32_t j = 0; j < WORKLOAD; ++j) {
            int32_t i = j * BLOCK_DIM_X + tid_local;
            uint32_t cur_lt = local_sum_lt[i], cur_eq = local_sum_eq[i];
            bool is_lt = cur_lt <= ls_lt_max && cur_lt != local_sum_lt[i - 1];
            bool is_eq = cur_eq <= ls_eq_max && cur_eq != local_sum_eq[i - 1];
            // exactly one should be true
            if (is_lt || is_eq) {
                uint32_t off_lt = cur_lt + k_offset_lt - 1;
                uint32_t off_eq = cur_eq + k_offset_eq - 1 + (k - allowed_eq);
                uint32_t ocol = is_lt ? off_lt : off_eq;
                output_value[batch * k + ocol] = input_data[i];
                output_idx[batch * k + ocol] = i + inp_col_begin;
            }
        }
    }
}

//! get workspace for scan, aligned to uint64_t
static size_t get_scan_workspace(uint32_t size) {
    size_t wk = 0;
    cudaError_t err = invoke_cub_scan(NULL, NULL, NULL, wk, size, NULL);
    if (err != cudaSuccess) {
        fprintf(stderr, "topk: cub scan failed: %s (%d)\n",
                cudaGetErrorString(err), static_cast<int>(err));
        megdnn_trap();
    }
    return ((wk - 1) / sizeof(uint64_t) + 1) * sizeof(uint64_t);
}

}  // namespace select
}  // namespace cuda_topk_impl

uint32_t topk::find_kth_radix_workspace(uint32_t batch, uint32_t length) {
    using namespace cuda_topk_impl::kth;
473 474 475 476 477 478 479 480 481 482 483
    int device_id;
    if (cudaGetDevice(&device_id) != cudaSuccess) {
        megdnn_trap();
    }
    cudaDeviceProp prop;
    if (cudaGetDeviceProperties(&prop, device_id) != cudaSuccess) {
        megdnn_trap();
    }
    uint32_t grid_dim_y_limit = prop.maxGridSize[1];
    uint32_t limit = batch > grid_dim_y_limit ? grid_dim_y_limit : batch;
    return (limit * get_grid_dim_x(length) * NR_BUCKET + limit * 2) *
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
           sizeof(uint32_t);
}

template <typename ctype>
cudaError_t topk::find_kth_radix(const ctype* input, ctype* output,
                                 void* workspace, uint32_t batch,
                                 uint32_t length, int32_t lda, int32_t k,
                                 cudaStream_t stream) {
    using namespace cuda_topk_impl::kth;
    if (!k) {
        return cudaErrorUnknown;
    }
    if (k < 0) {
        k = length + k + 1;
    }
    if (!(BUCKET_BITS == 8 && sizeof(ctype) == 4)) {
        // no c++11 in megdnn cuda; so we just trap instead of using static
        // assert
        megdnn_trap();
    }
504 505 506 507 508 509 510 511 512 513 514 515

    int device_id;
    if (cudaGetDevice(&device_id) != cudaSuccess) {
        megdnn_trap();
    }
    cudaDeviceProp prop;
    if (cudaGetDeviceProperties(&prop, device_id) != cudaSuccess) {
        megdnn_trap();
    }
    uint32_t grid_dim_y_limit = prop.maxGridSize[1];

    uint32_t batch_idx = 0;
516
    uint32_t grid_dim_x = get_grid_dim_x(length);
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    uint32_t grid_dim_y = 1;

    while (batch_idx < batch) {
        if (batch - batch_idx >= grid_dim_y_limit) {
            grid_dim_y = grid_dim_y_limit;
        } else {
            grid_dim_y = batch - batch_idx;
        }

        dim3 grid_dim(grid_dim_x, grid_dim_y);
        uint32_t* dev_k = static_cast<uint32_t*>(workspace);
        uint32_t* dev_prefix = dev_k + grid_dim_y;
        uint32_t* bucket_cnt = dev_prefix + grid_dim_y;

        compute_histogram<ctype, false, 24><<<grid_dim, BLOCK_DIM, 0, stream>>>(
                input + batch_idx * lda, bucket_cnt, length, lda, nullptr);

        // use float to make compiler happy; it is not used since last == false
        update_prefix_and_k<true, false, 24, float>
                <<<grid_dim_y, NR_BUCKET, 0, stream>>>(
                        bucket_cnt, dev_prefix, dev_k, k, grid_dim_x, nullptr);

        compute_histogram<ctype, true, 16><<<grid_dim, BLOCK_DIM, 0, stream>>>(
                input + batch_idx * lda, bucket_cnt, length, lda, dev_prefix);

        update_prefix_and_k<false, false, 16, float>
                <<<grid_dim_y, NR_BUCKET, 0, stream>>>(
                        bucket_cnt, dev_prefix, dev_k, k, grid_dim_x, nullptr);

        compute_histogram<ctype, true, 8><<<grid_dim, BLOCK_DIM, 0, stream>>>(
                input + batch_idx * lda, bucket_cnt, length, lda, dev_prefix);
548

549 550 551 552 553 554 555 556 557 558 559 560 561 562
        update_prefix_and_k<false, false, 8, float>
                <<<grid_dim_y, NR_BUCKET, 0, stream>>>(
                        bucket_cnt, dev_prefix, dev_k, k, grid_dim_x, nullptr);

        compute_histogram<ctype, true, 0><<<grid_dim, BLOCK_DIM, 0, stream>>>(
                input + batch_idx * lda, bucket_cnt, length, lda, dev_prefix);

        update_prefix_and_k<false, true, 0, ctype>
                <<<grid_dim_y, NR_BUCKET, 0, stream>>>(bucket_cnt, dev_prefix,
                                                       dev_k, k, grid_dim_x,
                                                       output + batch_idx);

        batch_idx += grid_dim_y;
    }
563 564 565 566 567 568 569 570 571 572
    return cudaGetLastError();
}

template <typename ctype>
cudaError_t topk::topk_select(const ctype* input, const ctype* thresh,
                              ctype* output_value, int32_t* output_idx,
                              void* workspace, uint32_t batch, uint32_t length,
                              int32_t lda, int32_t k, cudaStream_t stream) {
    using namespace cuda_topk_impl;
    using namespace cuda_topk_impl::select;
573 574 575 576 577 578 579 580 581 582 583 584

    int device_id;
    if (cudaGetDevice(&device_id) != cudaSuccess) {
        megdnn_trap();
    }
    cudaDeviceProp prop;
    if (cudaGetDeviceProperties(&prop, device_id) != cudaSuccess) {
        megdnn_trap();
    }
    uint32_t batch_upper_limit = prop.maxGridSize[1];

    uint32_t length_split = DIVUP(length, REDUCE_SIZE);
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

    void (*kptr_reduce_block_cnt)(const ctype*, const ctype*, uint32_t, int32_t,
                                  uint64_t*, uint32_t);
    void (*kptr_copy)(const ctype*, const ctype*, const uint64_t*, uint32_t,
                      ctype*, int32_t*, uint32_t, uint32_t, int32_t);

    int kern_copy_shard;
    {
        int grid, block;
        cudaError_t err = cudaOccupancyMaxPotentialBlockSize(
                &grid, &block, kern_copy<ctype, GreaterPred, 32>);
        if (err) {
            return err;
        }
        kern_copy_shard = block / (WARP_SIZE * 8) * 8;
        if (!kern_copy_shard) {
            fprintf(stderr, "topk: failed to launch: block=%d\n", block);
            return cudaErrorLaunchOutOfResources;
        }
    }

#define CASE_SHARD_ON(pred, n)                 \
    case n:                                    \
        kptr_copy = kern_copy<ctype, pred, n>; \
        break
#define CASE_SHARD(pred)                                          \
    switch (kern_copy_shard) {                                    \
        CASE_SHARD_ON(pred, 8);                                   \
        CASE_SHARD_ON(pred, 16);                                  \
        CASE_SHARD_ON(pred, 24);                                  \
        CASE_SHARD_ON(pred, 32);                                  \
        default:                                                  \
            fprintf(stderr, "topk: failed to launch: shard=%d\n", \
                    kern_copy_shard);                             \
            return cudaErrorLaunchOutOfResources;                 \
    }

    if (k < 0) {
        k = -k;
        kptr_reduce_block_cnt = kern_reduce_block_cnt<ctype, GreaterPred>;
        CASE_SHARD(GreaterPred);
    } else {
        kptr_reduce_block_cnt = kern_reduce_block_cnt<ctype, LessPred>;
        CASE_SHARD(LessPred);
    }

#undef CASE_SHARD
#undef CASE_SHARD_ON

634 635
    uint32_t batch_idx = 0;
    uint32_t batch_real = 1;
636

637 638 639 640 641 642
    while (batch_idx < batch) {
        if (batch - batch_idx >= batch_upper_limit) {
            batch_real = batch_upper_limit;
        } else {
            batch_real = batch - batch_idx;
        }
643

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
        size_t scan_size = batch_real * length_split;
        size_t scan_wk = get_scan_workspace(scan_size);
        uint64_t *scan_inp = static_cast<uint64_t*>(workspace) +
                             scan_wk / sizeof(uint64_t),
                 *scan_out = scan_inp + scan_size;

        // reduce to scan_inp
        kptr_reduce_block_cnt<<<
                dim3(DIVUP(length_split, REDUCE_SHARD), batch_real),
                dim3(REDUCE_WARP_SIZE, REDUCE_SHARD), 0, stream>>>(
                input + batch_idx * lda, thresh + batch_idx, length, lda,
                scan_inp, length_split);

        // scan to scan_out
        scan_out += 1;  // set scan[-1] to 0
        cudaError_t err = invoke_cub_scan(scan_inp, scan_out, workspace,
                                          scan_wk, scan_size, stream);
        if (err != cudaSuccess) {
            return err;
        }
        kern_init_zero<<<1, 1, 0, stream>>>(scan_out - 1);

        // copy result
        kptr_copy<<<dim3(DIVUP(length_split, kern_copy_shard), batch_real),
                    dim3(WARP_SIZE, kern_copy_shard), 0, stream>>>(
                input + batch_idx * lda, thresh + batch_idx, scan_out,
                length_split, output_value + std::abs(k) * batch_idx,
                output_idx + std::abs(k) * batch_idx, length, k, lda);

        batch_idx += batch_real;
    }
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
    return cudaGetLastError();
}

uint32_t topk::topk_select_workspace(uint32_t batch, uint32_t length) {
    using namespace cuda_topk_impl::select;
    size_t scan_size = batch * DIVUP(length, REDUCE_SIZE);
    return get_scan_workspace(scan_size) +
           sizeof(uint64_t) * (scan_size * 2 + 1);
}

namespace megdnn {
namespace cuda {
namespace topk {
#define INST(t)                                                             \
    template cudaError_t find_kth_radix<t>(const t*, t*, void*, uint32_t,   \
                                           uint32_t, int32_t, int32_t,      \
                                           cudaStream_t);                   \
    template cudaError_t topk_select<t>(const t*, const t*, t*, int32_t*,   \
                                        void*, uint32_t, uint32_t, int32_t, \
                                        int32_t, cudaStream_t)
INST(float);
INST(int32_t);
#undef INST

}  // namespace topk
}  // namespace cuda
}  // namespace megdnn

// vim: ft=cuda syntax=cuda.doxygen