convolution_operation.h 24.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/***************************************************************************************************
 * Copyright (c) 2017-2020, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 *modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright notice,
 *this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *notice, this list of conditions and the following disclaimer in the
 *documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the names of its
 *contributors may be used to endorse or promote products derived from this
 *software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 *AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 *IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 *DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY DIRECT,
 *INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 *OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TOR (INCLUDING
 *NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 *EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 **************************************************************************************************/
/**
 * \file dnn/src/cuda/cutlass/convolution_operation.h
 *
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 */

#pragma once

#include "cutlass/convolution/device/convolution.h"
#include "src/cuda/cutlass/library_internal.h"

///////////////////////////////////////////////////////////////////////////////////////////////////

namespace cutlass {
namespace library {

///////////////////////////////////////////////////////////////////////////////////////////////////

template <typename Operator_>
class ConvolutionOperationBase : public Operation {
public:
    using Operator = Operator_;
    using ElementSrc = typename Operator::ElementSrc;
    using LayoutSrc = typename Operator::LayoutSrc;
    using ElementFilter = typename Operator::ElementFilter;
    using LayoutFilter = typename Operator::LayoutFilter;
    using ElementDst = typename Operator::ElementDst;
    using LayoutDst = typename Operator::LayoutDst;
    using ElementBias = typename Operator::ElementBias;
    using LayoutBias = typename Operator::LayoutBias;
    using ElementAccumulator = typename Operator::ElementAccumulator;

    ConvolutionOperationBase(char const* name = "unknown_convolution") {
        m_description.name = name;
        m_description.provider = Provider::kCUTLASS;
        m_description.kind = OperationKind::kConvolution;
        m_description.conv_op = Operator::kConvolutionalOperator;

        m_description.tile_description.threadblock_shape = make_Coord(
                Operator::ThreadblockShape::kM, Operator::ThreadblockShape::kN,
                Operator::ThreadblockShape::kK);

        m_description.tile_description.threadblock_stages = Operator::kStages;

M
Megvii Engine Team 已提交
76 77 78 79
        m_description.tile_description.warp_count = make_Coord(
                Operator::ConvolutionKernel::WarpCount::kM,
                Operator::ConvolutionKernel::WarpCount::kN,
                Operator::ConvolutionKernel::WarpCount::kK);
80

M
Megvii Engine Team 已提交
81 82 83
        m_description.tile_description.math_instruction.instruction_shape = make_Coord(
                Operator::InstructionShape::kM, Operator::InstructionShape::kN,
                Operator::InstructionShape::kK);
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

        m_description.tile_description.math_instruction.element_accumulator =
                NumericTypeMap<ElementAccumulator>::kId;

        m_description.tile_description.math_instruction.opcode_class =
                OpcodeClassMap<typename Operator::OperatorClass>::kId;

        m_description.tile_description.math_instruction.math_operation =
                MathOperationMap<typename Operator::Operator>::kId;

        m_description.tile_description.minimum_compute_capability =
                ArchMap<typename Operator::ArchTag,
                        typename Operator::OperatorClass>::kMin;

        m_description.tile_description.maximum_compute_capability =
                ArchMap<typename Operator::ArchTag,
                        typename Operator::OperatorClass>::kMax;

M
Megvii Engine Team 已提交
102 103 104 105 106 107
        m_description.src =
                make_TensorDescription<ElementSrc, LayoutSrc>(Operator::kAlignmentSrc);
        m_description.filter = make_TensorDescription<ElementFilter, LayoutFilter>(
                Operator::kAlignmentFilter);
        m_description.dst =
                make_TensorDescription<ElementDst, LayoutDst>(Operator::kAlignmentDst);
108 109 110 111 112 113 114 115 116
        m_description.bias = make_TensorDescription<ElementBias, LayoutBias>(
                Operator::kAlignmentDst);

        m_description.convolution_type = Operator::kConvolutionType;
        m_description.arch_tag = ArchTagMap<typename Operator::ArchTag>::kId;

        m_description.epilogue_type = Operator::EpilogueOutputOp::kType;
        m_description.epilogue_count = Operator::EpilogueOutputOp::kCount;

M
Megvii Engine Team 已提交
117 118
        m_description.threadblock_swizzle =
                ThreadblockSwizzleMap<typename Operator::ThreadblockSwizzle>::kId;
119

M
Megvii Engine Team 已提交
120
        m_description.special_optimization = Operator::kSpecialOpt;
121 122 123 124
        m_description.gemm_mode = Operator::kGemmMode;
        m_description.without_shared_load = Operator::kWithoutSharedLoad;
    }

M
Megvii Engine Team 已提交
125
    virtual OperationDescription const& description() const { return m_description; }
126 127 128 129 130 131 132 133 134 135 136 137

protected:
    ConvolutionDescription m_description;
};

///////////////////////////////////////////////////////////////////////////////////////////////////

namespace detail {

template <typename EpilogueOp, epilogue::EpilogueType type>
struct init_epilogue_param_;

138 139 140 141 142 143 144 145 146
template <typename EpilogueOp>
struct init_epilogue_param_<EpilogueOp, epilogue::EpilogueType::kLinearCombination> {
    using ElementCompute = typename EpilogueOp::ElementCompute;
    typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
        return {*static_cast<ElementCompute const*>(conv_args->alpha),
                *static_cast<ElementCompute const*>(conv_args->beta)};
    }
};

147
template <typename EpilogueOp>
M
Megvii Engine Team 已提交
148 149
struct init_epilogue_param_<
        EpilogueOp, epilogue::EpilogueType::kBiasAddLinearCombination> {
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    using ElementCompute = typename EpilogueOp::ElementCompute;
    typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
        return {*static_cast<ElementCompute const*>(conv_args->alpha),
                *static_cast<ElementCompute const*>(conv_args->beta),
                *static_cast<ElementCompute const*>(conv_args->gamma),
                *static_cast<ElementCompute const*>(conv_args->delta)};
    }
};

template <typename EpilogueOp>
struct init_epilogue_param_<
        EpilogueOp, epilogue::EpilogueType::kBiasAddLinearCombinationClamp> {
    using ElementCompute = typename EpilogueOp::ElementCompute;
    typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
        return {*static_cast<ElementCompute const*>(conv_args->alpha),
                *static_cast<ElementCompute const*>(conv_args->beta),
                *static_cast<ElementCompute const*>(conv_args->gamma),
                *static_cast<ElementCompute const*>(conv_args->delta)};
    }
};

template <typename EpilogueOp>
struct init_epilogue_param_<
        EpilogueOp, epilogue::EpilogueType::kBiasAddLinearCombinationRelu> {
    using ElementCompute = typename EpilogueOp::ElementCompute;
    typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
        return {*static_cast<ElementCompute const*>(conv_args->alpha),
                *static_cast<ElementCompute const*>(conv_args->beta),
                *static_cast<ElementCompute const*>(conv_args->gamma),
                *static_cast<ElementCompute const*>(conv_args->threshold),
                *static_cast<ElementCompute const*>(conv_args->delta),
                *static_cast<ElementCompute const*>(conv_args->theta)};
    }
};

template <typename EpilogueOp>
struct init_epilogue_param_<
M
Megvii Engine Team 已提交
187
        EpilogueOp, epilogue::EpilogueType::kBiasAddLinearCombinationReluClamp> {
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    using ElementCompute = typename EpilogueOp::ElementCompute;
    typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
        return {*static_cast<ElementCompute const*>(conv_args->alpha),
                *static_cast<ElementCompute const*>(conv_args->beta),
                *static_cast<ElementCompute const*>(conv_args->gamma),
                *static_cast<ElementCompute const*>(conv_args->threshold),
                *static_cast<ElementCompute const*>(conv_args->delta),
                *static_cast<ElementCompute const*>(conv_args->theta)};
    }
};

template <typename EpilogueOp>
struct init_epilogue_param_<
        EpilogueOp, epilogue::EpilogueType::kBiasAddLinearCombinationHSwish> {
    using ElementCompute = typename EpilogueOp::ElementCompute;
    typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
        return {*static_cast<ElementCompute const*>(conv_args->alpha),
                *static_cast<ElementCompute const*>(conv_args->beta),
                *static_cast<ElementCompute const*>(conv_args->gamma),
                *static_cast<ElementCompute const*>(conv_args->scale),
                *static_cast<ElementCompute const*>(conv_args->delta),
                *static_cast<ElementCompute const*>(conv_args->theta)};
    }
};

template <typename EpilogueOp>
struct init_epilogue_param_<
M
Megvii Engine Team 已提交
215
        EpilogueOp, epilogue::EpilogueType::kBiasAddLinearCombinationHSwishClamp> {
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    using ElementCompute = typename EpilogueOp::ElementCompute;
    typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
        return {*static_cast<ElementCompute const*>(conv_args->alpha),
                *static_cast<ElementCompute const*>(conv_args->beta),
                *static_cast<ElementCompute const*>(conv_args->gamma),
                *static_cast<ElementCompute const*>(conv_args->scale),
                *static_cast<ElementCompute const*>(conv_args->delta),
                *static_cast<ElementCompute const*>(conv_args->theta)};
    }
};

}  // namespace detail

template <typename EpilogueOp>
struct init_epilogue_param
        : public detail::init_epilogue_param_<EpilogueOp, EpilogueOp::kType> {};

///////////////////////////////////////////////////////////////////////////////////////////////////

template <typename Operator_>
class ConvolutionOperation : public ConvolutionOperationBase<Operator_> {
public:
    using Operator = Operator_;
    using ElementSrc = typename Operator::ElementSrc;
    using LayoutSrc = typename Operator::LayoutSrc;
    using ElementFilter = typename Operator::ElementFilter;
    using LayoutFilter = typename Operator::LayoutFilter;
    using ElementBias = typename Operator::ElementBias;
    using LayoutBias = typename Operator::LayoutBias;
    using ElementDst = typename Operator::ElementDst;
    using LayoutDst = typename Operator::LayoutDst;
    using ElementAccumulator = typename Operator::ElementAccumulator;
    using ElementCompute = typename Operator::EpilogueOutputOp::ElementCompute;

    using OperatorArguments = typename Operator::Arguments;

    ConvolutionOperation(char const* name = "unknown_gemm")
            : ConvolutionOperationBase<Operator_>(name) {}

M
Megvii Engine Team 已提交
255 256 257
    virtual Status run(
            void const* arguments_ptr, void* device_workspace = nullptr,
            cudaStream_t stream = nullptr) const {
258 259 260 261 262 263 264 265 266 267
        cutlass::conv::Operator conv_op = this->m_description.conv_op;
        ConvolutionArguments const* conv_args =
                reinterpret_cast<ConvolutionArguments const*>(arguments_ptr);
        const auto& ps = conv_args->problem_size;

        OperatorArguments args;
        args.problem_size = ps;
        args.ref_src = {
                static_cast<ElementSrc*>(const_cast<void*>(conv_args->src)),
                LayoutSrc::packed(implicit_gemm_tensor_a_extent(conv_op, ps))};
M
Megvii Engine Team 已提交
268 269 270
        args.ref_filter = {
                static_cast<ElementFilter*>(const_cast<void*>(conv_args->filter)),
                LayoutFilter::packed(implicit_gemm_tensor_b_extent(conv_op, ps))};
271 272
        args.ref_bias = {
                static_cast<ElementBias*>(const_cast<void*>(conv_args->bias)),
M
Megvii Engine Team 已提交
273
                LayoutBias::packed(implicit_gemm_tensor_bias_extent(conv_op, ps))};
274 275 276 277 278 279 280
        args.ref_z = {
                static_cast<ElementDst*>(const_cast<void*>(conv_args->z)),
                LayoutDst::packed(implicit_gemm_tensor_c_extent(conv_op, ps))};
        args.ref_dst = {
                static_cast<ElementDst*>(conv_args->dst),
                LayoutDst::packed(implicit_gemm_tensor_c_extent(conv_op, ps))};

M
Megvii Engine Team 已提交
281 282
        args.output_op = init_epilogue_param<typename Operator::EpilogueOutputOp>().get(
                conv_args);
283 284

        if (conv_args->extra_param) {
M
Megvii Engine Team 已提交
285 286
            args.extra_param = *reinterpret_cast<typename Operator::ExtraParam const*>(
                    conv_args->extra_param);
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        }

        Operator op;
        Status status = op.initialize(args, device_workspace);

        if (status != Status::kSuccess) {
            return status;
        }

        return op.run(stream);
    }
};

///////////////////////////////////////////////////////////////////////////////////////////////////

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/// We add a new template class to handle convolution backward filter operation, because
/// the device-level convolution operator of backward filter is different from the
/// others (convolution forward and convolution backward data).
/// But the description object is reused in this wrapper of convolution backward filter.
/// The reason is that we do not want to introduce an another unnecessary structure.
/// TODO: Maybe the device-level operator in cutlass for convoluton forward, backward
/// data and backward filter should be combined.
template <typename Operator_>
class ConvolutionBackwardFilterOperationBase : public Operation {
public:
    using Operator = Operator_;
    using ElementSrc = typename Operator::ElementSrc;
    using LayoutSrc = typename Operator::LayoutSrc;
    using ElementDiff = typename Operator::ElementDiff;
    using LayoutDiff = typename Operator::LayoutDiff;
    using ElementGrad = typename Operator::ElementGrad;
    using LayoutGrad = typename Operator::LayoutGrad;
    using ElementAccumulator = typename Operator::ElementAccumulator;

    ConvolutionBackwardFilterOperationBase(char const* name = "unknown_convolution") {
        m_description.name = name;
        m_description.provider = Provider::kCUTLASS;
        m_description.kind = OperationKind::kConvolution;
        m_description.conv_op = Operator::kConvolutionalOperator;

        m_description.tile_description.threadblock_shape = make_Coord(
                Operator::ThreadblockShape::kM, Operator::ThreadblockShape::kN,
                Operator::ThreadblockShape::kK);

        m_description.tile_description.threadblock_stages = Operator::kStages;

        m_description.tile_description.warp_count = make_Coord(
                Operator::ConvolutionKernel::WarpCount::kM,
                Operator::ConvolutionKernel::WarpCount::kN,
                Operator::ConvolutionKernel::WarpCount::kK);

        m_description.tile_description.math_instruction.instruction_shape = make_Coord(
                Operator::InstructionShape::kM, Operator::InstructionShape::kN,
                Operator::InstructionShape::kK);

        m_description.tile_description.math_instruction.element_accumulator =
                NumericTypeMap<ElementAccumulator>::kId;

        m_description.tile_description.math_instruction.opcode_class =
                OpcodeClassMap<typename Operator::OperatorClass>::kId;

        m_description.tile_description.math_instruction.math_operation =
                MathOperationMap<typename Operator::Operator>::kId;

        m_description.tile_description.minimum_compute_capability =
                ArchMap<typename Operator::ArchTag,
                        typename Operator::OperatorClass>::kMin;

        m_description.tile_description.maximum_compute_capability =
                ArchMap<typename Operator::ArchTag,
                        typename Operator::OperatorClass>::kMax;

        /// src in description -> src in C++ template
        m_description.src =
                make_TensorDescription<ElementSrc, LayoutSrc>(Operator::kAlignmentSrc);
        /// filter in description -> diff in C++ template
        m_description.filter = make_TensorDescription<ElementDiff, LayoutDiff>(
                Operator::kAlignmentDiff);
        /// dst in description -> grad in C++ template
        m_description.dst = make_TensorDescription<ElementGrad, LayoutGrad>(
                Operator::kAlignmentGrad);
        /// because bias tensor is not used in ConvolutionBackwardFilter operation, the
        /// following tensor description is a dummy arguments
        m_description.bias = make_TensorDescription<ElementGrad, LayoutGrad>(
                Operator::kAlignmentGrad);

        m_description.convolution_type = Operator::kConvolutionType;
        m_description.arch_tag = ArchTagMap<typename Operator::ArchTag>::kId;

        m_description.epilogue_type = Operator::EpilogueOutputOp::kType;
        m_description.epilogue_count = Operator::EpilogueOutputOp::kCount;

        m_description.threadblock_swizzle =
                ThreadblockSwizzleMap<typename Operator::ThreadblockSwizzle>::kId;

        m_description.special_optimization = Operator::kSpecialOpt;
        m_description.gemm_mode = Operator::kGemmMode;
        /// ConvolutionBackwardFilter operation is only used for depthwise convolution,
        /// so the option without_shared_load is always true
        m_description.without_shared_load = true;
    }

    virtual OperationDescription const& description() const { return m_description; }

protected:
    ConvolutionDescription m_description;
};

///////////////////////////////////////////////////////////////////////////////////////////////////

template <typename Operator_>
class ConvolutionBackwardFilterOperation
        : public ConvolutionBackwardFilterOperationBase<Operator_> {
public:
    using Operator = Operator_;
    using ElementSrc = typename Operator::ElementSrc;
    using LayoutSrc = typename Operator::LayoutSrc;
    using ElementDiff = typename Operator::ElementDiff;
    using LayoutDiff = typename Operator::LayoutDiff;
    using ElementGrad = typename Operator::ElementGrad;
    using LayoutGrad = typename Operator::LayoutGrad;
    using ElementAccumulator = typename Operator::ElementAccumulator;
    using ElementCompute = typename Operator::EpilogueOutputOp::ElementCompute;

    using OperatorArguments = typename Operator::Arguments;

    ConvolutionBackwardFilterOperation(char const* name = "unknown_gemm")
            : ConvolutionBackwardFilterOperationBase<Operator_>(name) {}

    virtual Status run(
            void const* arguments_ptr, void* device_workspace = nullptr,
            cudaStream_t stream = nullptr) const {
        cutlass::conv::Operator conv_op = this->m_description.conv_op;
        ConvolutionArguments const* conv_args =
                reinterpret_cast<ConvolutionArguments const*>(arguments_ptr);
        const auto& ps = conv_args->problem_size;

        OperatorArguments args;
        args.problem_size = ps;
        /// src in convolution arguments -> ref_src
        args.ref_src = {
                static_cast<ElementSrc*>(const_cast<void*>(conv_args->src)),
                LayoutSrc::packed(implicit_gemm_tensor_b_extent(conv_op, ps))};
        /// filter in convolution arguments -> ref_diff
        args.ref_diff = {
                static_cast<ElementDiff*>(const_cast<void*>(conv_args->filter)),
                LayoutDiff::packed(implicit_gemm_tensor_a_extent(conv_op, ps))};
        /// dst in convolution arguments -> ref_grad
        args.ref_grad = {
                static_cast<ElementGrad*>(conv_args->dst),
                LayoutGrad::packed(implicit_gemm_tensor_c_extent(conv_op, ps))};

        args.output_op = init_epilogue_param<typename Operator::EpilogueOutputOp>().get(
                conv_args);

        Operator op;
        Status status = op.initialize(args, device_workspace);

        if (status != Status::kSuccess) {
            return status;
        }

        return op.run(stream);
    }
};

///////////////////////////////////////////////////////////////////////////////////////////////////

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
template <typename Operator_>
class RegionRestrictedConvolutionBackwardFilterOperation
        : public ConvolutionBackwardFilterOperationBase<Operator_> {
public:
    using Operator = Operator_;
    using ElementSrc = typename Operator::ElementSrc;
    using LayoutSrc = typename Operator::LayoutSrc;
    using ElementDiff = typename Operator::ElementDiff;
    using LayoutDiff = typename Operator::LayoutDiff;
    using ElementGrad = typename Operator::ElementGrad;
    using LayoutGrad = typename Operator::LayoutGrad;
    using ElementAccumulator = typename Operator::ElementAccumulator;
    using ElementCompute = typename Operator::EpilogueOutputOp::ElementCompute;

    using OperatorArguments = typename Operator::Arguments;

    using ElementRin = typename Operator::ElementMaskInput;
    using LayoutRin = typename Operator::LayoutMaskInput;
    using ElementRout = typename Operator::ElementMaskOutput;
    using LayoutRout = typename Operator::LayoutMaskOutput;

    RegionRestrictedConvolutionBackwardFilterOperation(
            char const* name = "unknown_gemm")
            : ConvolutionBackwardFilterOperationBase<Operator_>(name) {
        /// rin in description -> rin in C++ template
        this->m_description.rin = make_TensorDescription<ElementRin, LayoutRin>(
                Operator::kAlignmentMaskInput);
        /// rout in description -> rout in C++ template
        this->m_description.rout = make_TensorDescription<ElementRout, LayoutRout>(
                Operator::kAlignmentMaskOutput);
        this->m_description.without_shared_load = false;
    }

    virtual Status run(
            void const* arguments_ptr, void* device_workspace = nullptr,
            cudaStream_t stream = nullptr) const {
        cutlass::conv::Operator conv_op = this->m_description.conv_op;
        ConvolutionArguments const* conv_args =
                reinterpret_cast<ConvolutionArguments const*>(arguments_ptr);
        const auto& ps = conv_args->problem_size;

        OperatorArguments args;
        args.problem_size = ps;
        /// src in convolution arguments -> ref_src
        args.ref_src = {
                static_cast<ElementSrc*>(const_cast<void*>(conv_args->src)),
                LayoutSrc::packed(implicit_gemm_tensor_b_extent(conv_op, ps))};
        /// filter in convolution arguments -> ref_diff
        args.ref_diff = {
                static_cast<ElementDiff*>(const_cast<void*>(conv_args->filter)),
                LayoutDiff::packed(implicit_gemm_tensor_a_extent(conv_op, ps))};
        /// dst in convolution arguments -> ref_grad
        args.ref_grad = {
                static_cast<ElementGrad*>(conv_args->dst),
                LayoutGrad::packed(implicit_gemm_tensor_c_extent(conv_op, ps))};
        /// rin in convolution arguments -> ref_mask_input
        args.ref_mask_input = {
                static_cast<ElementRin*>(const_cast<void*>(conv_args->rin)),
                LayoutRin::packed(implicit_gemm_tensor_rin_extent(conv_op, ps))};
        /// rout in convolution arguments -> ref_mask_output
        args.ref_mask_output = {
                static_cast<ElementRout*>(const_cast<void*>(conv_args->rout)),
                LayoutRout::packed(implicit_gemm_tensor_rout_extent(conv_op, ps))};

        args.output_op = init_epilogue_param<typename Operator::EpilogueOutputOp>().get(
                conv_args);

        Operator op;
        Status status = op.initialize(args, device_workspace);

        if (status != Status::kSuccess) {
            return status;
        }

        return op.run(stream);
    }
};

///////////////////////////////////////////////////////////////////////////////////////////////////

535 536 537 538
}  // namespace library
}  // namespace cutlass

///////////////////////////////////////////////////////////////////////////////////////////////////