utils.cuh 14.0 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/cuda/utils.cuh
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */
#pragma once

#include "include/megdnn/dtype.h"
#include "src/common/utils.cuh"

#include <stdint.h>

#include <cublas_v2.h>
#include <cuda_runtime_api.h>
#include <cusolverDn.h>
#include "cuda.h"
#include "src/cuda/cudnn_with_check.h"
23
#include "cutlass/cutlass.h"
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

#define cuda_check(_x)                                       \
    do {                                                     \
        cudaError_t _err = (_x);                             \
        if (_err != cudaSuccess) {                           \
            ::megdnn::cuda::__throw_cuda_error__(_err, #_x); \
        }                                                    \
    } while (0)

#define cublas_check(_x)                                       \
    do {                                                       \
        cublasStatus_t _err = (_x);                            \
        if (_err != CUBLAS_STATUS_SUCCESS) {                   \
            ::megdnn::cuda::__throw_cublas_error__(_err, #_x); \
        }                                                      \
    } while (0)

#define cudnn_check(_x)                                       \
    do {                                                      \
        cudnnStatus_t _err = (_x);                            \
        if (_err != CUDNN_STATUS_SUCCESS) {                   \
            ::megdnn::cuda::__throw_cudnn_error__(_err, #_x); \
        }                                                     \
    } while (0)

#define cusolver_check(_x)                                       \
    do {                                                         \
        cusolverStatus_t _err = (_x);                            \
        if (_err != CUSOLVER_STATUS_SUCCESS) {                   \
            ::megdnn::cuda::__throw_cusolver_error__(_err, #_x); \
        }                                                        \
    } while (0)

57 58 59 60 61 62 63 64
#define cucheck(_x)                                                 \
    do {                                                            \
        CUresult _err = (_x);                                       \
        if (_err != CUDA_SUCCESS) {                                 \
            ::megdnn::cuda::__throw_cuda_driver_error__(_err, #_x); \
        }                                                           \
    } while (0)

65 66 67 68 69 70 71 72
#define cutlass_check(_x)                                       \
    do {                                                        \
        cutlass::Status _err = (_x);                            \
        if (_err != cutlass::Status::kSuccess) {                \
            ::megdnn::cuda::__throw_cutlass_error__(_err, #_x); \
        }                                                       \
    } while (0)

73 74 75 76 77 78 79 80
#define after_kernel_launch()           \
    do {                                \
        cuda_check(cudaGetLastError()); \
    } while (0)

#if MEGDNN_THREADS_512
#define NR_THREADS 512
#define NR_THREADS_X 32
81
#define NR_THREADS_Y 16 
82 83 84 85 86 87 88
#else
#define NR_THREADS 1024
#define NR_THREADS_X 32
#define NR_THREADS_Y 32
#endif

#define DIVUP(x, y) (((x) + (y)-1) / (y))
89
#define ROUNDUP(x, y) (DIVUP(x, y) * (y))
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

#define KERN_FOR(i, n)                                              \
    for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
         i += blockDim.x * gridDim.x)

namespace megdnn {
namespace cuda {

//! Error handling funcions
MEGDNN_NORETURN void __throw_cuda_error__(cudaError_t err, const char* msg);
MEGDNN_NORETURN void __throw_cudnn_error__(cudnnStatus_t err, const char* msg);
MEGDNN_NORETURN void __throw_cublas_error__(cublasStatus_t err,
                                            const char* msg);
MEGDNN_NORETURN void __throw_cusolver_error__(cusolverStatus_t err,
                                              const char* msg);
105
MEGDNN_NORETURN void __throw_cuda_driver_error__(CUresult err, const char* msg);
106 107
MEGDNN_NORETURN void __throw_cutlass_error__(cutlass::Status status,
                                             const char* msg);
108 109 110 111 112
MEGDNN_NORETURN void report_error(const char* msg);

template <typename T, size_t N>
struct array_wrapper {
    T data[N];
113 114 115 116 117 118
    MEGDNN_DEVICE __forceinline__ T& operator[](size_t pos) {
        return reinterpret_cast<T&>(data[pos]);
    }
    MEGDNN_DEVICE __forceinline__ T const& operator[](size_t pos) const {
        return reinterpret_cast<T const&>(data[pos]);
    }
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
};

/*!
 * \brief convert size to uint32_t and check for not overflow
 *
 * throw exception with human readable message if size not in the interval (0,
 * Uint32Fastdiv::MAX_DIVIDEND)
 */
uint32_t safe_size_in_kern(size_t size);

#ifdef __CUDACC__
template <typename T>
inline __device__ void fill_shared_mem(T* shared, uint32_t n, const T& val) {
    uint32_t stride = blockDim.x * blockDim.y * blockDim.z;
    uint32_t i =
            (threadIdx.z * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x;
    for (; i < n; i += stride)
        shared[i] = val;
}
#endif

// ==========================DTypeParam wrapper=================================
// Division is inefficient in cuda, so we replace div scale with mul 1/scale,
// and we need a wrapper of DTypeParam to hold the reciprocal of scale.

template <typename Type>
struct CudaDTypeParamImpl;

template <typename DType>
using CudaDTypeParam = CudaDTypeParamImpl<typename DTypeTrait<DType>::ctype>;

template <>
struct CudaDTypeParamImpl<dt_quint8> : DTypeParamImpl<dt_quint8> {
    float inv_scale;
    CudaDTypeParamImpl() = default;
    CudaDTypeParamImpl(float scale, uint8_t zero_point)
            : DTypeParamImpl<dt_quint8>(scale, zero_point),
              inv_scale(1.0f / scale) {}
    CudaDTypeParamImpl(const DTypeParamImpl<dt_quint8>& param)
            : CudaDTypeParamImpl(param.scale, param.zero_point) {}

    __device__ dt_quint8 quantize(float in) const {
        float v = in * inv_scale;
        v = roundf(v);
        v = v + zero_point;
        v = fmin(fmax(0.f, v), 255.f);
        return static_cast<dt_quint8>(v);
    }
};

template <>
struct CudaDTypeParamImpl<dt_qint8> : DTypeParamImpl<dt_qint8> {
    float inv_scale;
    CudaDTypeParamImpl() = default;
    CudaDTypeParamImpl(float scale)
            : DTypeParamImpl<dt_qint8>(scale), inv_scale(1.0f / scale) {}
    CudaDTypeParamImpl(const DTypeParamImpl<dt_qint8>& param)
            : CudaDTypeParamImpl(param.scale) {}

    __device__ dt_qint8 quantize(float in) const {
        float v = in * inv_scale;
        v = roundf(v);
        v = fmin(fmax(-128.f, v), 127.f);
        return static_cast<dt_qint8>(v);
    }
};

template <>
struct CudaDTypeParamImpl<dt_qint32> : DTypeParamImpl<dt_qint32> {
    float inv_scale;
    CudaDTypeParamImpl() = default;
    CudaDTypeParamImpl(float scale)
            : DTypeParamImpl<dt_qint32>(scale), inv_scale(1.0f / scale) {}
    CudaDTypeParamImpl(const DTypeParamImpl<dt_qint32>& param)
            : CudaDTypeParamImpl(param.scale) {}

    __device__ dt_qint32 quantize(float in) const {
        float v = in * inv_scale;
        v = roundf(v);
        /*! \note: the maximal signed integer that can be correctly represented
         * as a single precision floating point number is 2147483520
         */
        v = fmin(fmax(-2147483648.f, v), 2147483520.f);
        return static_cast<dt_qint32>(v);
    }
};

template <>
struct CudaDTypeParamImpl<dt_quint4> : DTypeParamImpl<dt_quint4> {
    float inv_scale;
    CudaDTypeParamImpl() = default;
    CudaDTypeParamImpl(float scale, uint8_t zero_point)
            : DTypeParamImpl<dt_quint4>(scale, zero_point),
              inv_scale(1.0f / scale) {}
    CudaDTypeParamImpl(const DTypeParamImpl<dt_quint4>& param)
            : CudaDTypeParamImpl(param.scale, param.zero_point) {}

216
    __device__ dt_quint4 quantize(float in) const {
217 218 219 220
        float v = in * inv_scale;
        v = roundf(v);
        v = v + zero_point;
        v = fmin(fmax(0.f, v), 15.f);
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        return static_cast<dt_quint4>(v);
    }
};

template <>
struct CudaDTypeParamImpl<dt_qint4> : DTypeParamImpl<dt_qint4> {
    float inv_scale;
    CudaDTypeParamImpl() = default;
    CudaDTypeParamImpl(float scale)
            : DTypeParamImpl<dt_qint4>(scale), inv_scale(1.0f / scale) {}
    CudaDTypeParamImpl(const DTypeParamImpl<dt_qint4>& param)
            : CudaDTypeParamImpl(param.scale) {}

    __device__ dt_qint4 quantize(float in) const {
        float v = in * inv_scale;
        v = roundf(v);
        v = fmin(fmax(-8.f, v), 7.f);
        return static_cast<dt_qint4>(v);
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    }
};

#if MEGDNN_CC_CUDA
template <typename T>
static inline MEGDNN_DEVICE void atomic_add(T* address, T val);

template <>
MEGDNN_DEVICE void atomic_add(dt_float32* address, dt_float32 val) {
    ::atomicAdd(reinterpret_cast<float*>(address), static_cast<float>(val));
}

// overload atomicAdd for half precision
// Taken from:
// https://github.com/torch/cutorch/blob/master/lib/THC/THCAtomic.cuh
template <>
MEGDNN_DEVICE void atomic_add(dt_float16* address, dt_float16 val) {
#if (__CUDA_ARCH__ < 700 || __CUDACC_VER_MAJOR__ <= 9)
    unsigned int* address_as_ui = reinterpret_cast<unsigned int*>(
            reinterpret_cast<char*>(address) -
            (reinterpret_cast<size_t>(address) & 2));
    unsigned int old = *address_as_ui;
    unsigned int assumed;

    do {
        assumed = old;
        unsigned short data = reinterpret_cast<size_t>(address) & 2
                                      ? (old >> 16)
                                      : (old & 0xffff);
        dt_float16 hsum = *reinterpret_cast<dt_float16*>(&data);
        hsum += val;
        data = *reinterpret_cast<unsigned short*>(&hsum);
        old = reinterpret_cast<size_t>(address) & 2
                      ? (old & 0xffff) | (data << 16)
                      : (old & 0xffff0000) | data;
        old = ::atomicCAS(address_as_ui, assumed, old);
    } while (assumed != old);
#else
    ::atomicAdd(reinterpret_cast<__half*>(address), static_cast<__half>(val));
#endif
}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
template <>
MEGDNN_DEVICE void atomic_add(dt_bfloat16* address, dt_bfloat16 val) {
    unsigned int* address_as_ui = reinterpret_cast<unsigned int*>(
            reinterpret_cast<char*>(address) -
            (reinterpret_cast<size_t>(address) & 2));
    unsigned int old = *address_as_ui;
    unsigned int assumed;

    do {
        assumed = old;
        unsigned short data = reinterpret_cast<size_t>(address) & 2
                                      ? (old >> 16)
                                      : (old & 0xffff);
        dt_bfloat16 hsum = *reinterpret_cast<dt_bfloat16*>(&data);
        hsum += val;
        data = *reinterpret_cast<unsigned short*>(&hsum);
        old = reinterpret_cast<size_t>(address) & 2
                      ? (old & 0xffff) | (data << 16)
                      : (old & 0xffff0000) | data;
        old = ::atomicCAS(address_as_ui, assumed, old);
    } while (assumed != old);
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static inline MEGDNN_DEVICE void dot_prod(int a, int b, int c, int& d) {
#if __CUDA_ARCH__ >= 610
    // clang-format off
    asm volatile("dp4a.s32.s32 %0, %1, %2, %3;"
            : "=r"(d)
            : "r"(a), "r"(b), "r"(c));
    // clang-format on
#else
    d = 0;
#pragma unroll
    for (int i = 0; i < 4; ++i) {
        int8_t val_a = (a & 0xff), val_b = (b & 0xff);
        d += static_cast<int>(val_a) * static_cast<int>(val_b);
        a = (a >> 8), b = (b >> 8);
    }
    d += c;
#endif
}

// the following code is taken from cutlass:
// https://github.com/NVIDIA/cutlass/blob/master/cutlass/gemm/igemm_epilogue.h
// Note: using .rni integer rounding modifier, i.e. rounding to nearest integer,
// choosing even integer if source is equidistant between two integers. The
// reason not use roundf is that roundf() maps to an 8-instruction sequence on
// the device, which causes significant performance drop in some cases. For
// details, refer to
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
MEGDNN_DEVICE __forceinline__ static int transform_float4_to_int8x4(
        float4 val) {
    int ix, iy, iz, iw;
    asm volatile("cvt.rni.s8.f32 %0, %1;" : "=r"(ix) : "f"(val.x));
    asm volatile("cvt.rni.s8.f32 %0, %1;" : "=r"(iy) : "f"(val.y));
    asm volatile("cvt.rni.s8.f32 %0, %1;" : "=r"(iz) : "f"(val.z));
    asm volatile("cvt.rni.s8.f32 %0, %1;" : "=r"(iw) : "f"(val.w));

    asm volatile("prmt.b32 %0, %0, %1, 0x1140;" : "+r"(ix) : "r"(iy));
    asm volatile("prmt.b32 %0, %0, %1, 0x1140;" : "+r"(iz) : "r"(iw));
    asm volatile("prmt.b32 %0, %0, %1, 0x5410;" : "+r"(ix) : "r"(iz));
    return ix;
}

MEGDNN_DEVICE __forceinline__ static float4 transform_int8x4_to_float4(
        int val) {
    int ix, iy, iz, iw = val;

    // Extract the 4 bytes
    asm volatile("prmt.b32 %0, %1, 0x0, 0x4440;" : "=r"(ix) : "r"(iw));
    asm volatile("prmt.b32 %0, %1, 0x0, 0x4441;" : "=r"(iy) : "r"(iw));
    asm volatile("prmt.b32 %0, %1, 0x0, 0x4442;" : "=r"(iz) : "r"(iw));
    asm volatile("prmt.b32 %0, %1, 0x0, 0x4443;" : "=r"(iw) : "r"(iw));
    // the floats
    float fx, fy, fz, fw;

    // convert to floats (make sure we generate I2F.F32.S8)
    asm volatile("cvt.rn.f32.s8 %0, %1;" : "=f"(fx) : "r"(ix));
    asm volatile("cvt.rn.f32.s8 %0, %1;" : "=f"(fy) : "r"(iy));
    asm volatile("cvt.rn.f32.s8 %0, %1;" : "=f"(fz) : "r"(iz));
    asm volatile("cvt.rn.f32.s8 %0, %1;" : "=f"(fw) : "r"(iw));

    return ::make_float4(fx, fy, fz, fw);
}

MEGDNN_DEVICE __forceinline__ static float4 operator*(float scalar,
                                                      float4 val) {
    return make_float4(scalar * val.x, scalar * val.y, scalar * val.z,
                       scalar * val.w);
}

MEGDNN_DEVICE __forceinline__ static float4 operator+(float4 lval,
                                                      float4 rval) {
    return make_float4(lval.x + rval.x, lval.y + rval.y, lval.z + rval.z,
                       lval.w + rval.w);
}
377

378 379 380 381 382
#endif
}  // namespace cuda
}  // namespace megdnn

// vim: syntax=cpp.doxygen