lower_to_affine_pass.cpp 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/**
 * \file src/jit/impl/mlir/ir/lower_to_affine_pass.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 */

#include "megbrain_build_config.h"
#if MGB_JIT && MGB_JIT_MLIR

#include "megbrain/common.h"
#include "megbrain/jit/mlir/ir/dialect.h"
#include "megbrain/jit/mlir/ir/passes.h"
19
#include "megbrain/jit/mlir/ir/utils.h"
20

21
#include "./each_mode.h"
22 23 24 25

#include <mlir/Dialect/Affine/IR/AffineOps.h>
#include <mlir/Pass/Pass.h>
#include <mlir/Transforms/DialectConversion.h>
26
#include "mlir/IR/StandardTypes.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

#include <llvm/ADT/Sequence.h>

using namespace mgb;
using namespace jit;

namespace {

using LoopIterationFn = function_ref<Value(
        OpBuilder& rewriter, ValueRange memRefOperands, ValueRange loopIvs)>;

void lower_op_to_loops(Operation* op, ValueRange operands,
                       PatternRewriter& rewriter,
                       LoopIterationFn process_iteration) {
    auto memref_type = (*op->result_type_begin()).cast<MemRefType>();
    auto loc = op->getLoc();

    auto alloc = jit::insert_alloc_and_dealloc(memref_type, loc, rewriter);

    SmallVector<int64_t, 4> lower_bounds(memref_type.getRank(), 0);
    SmallVector<int64_t, 4> steps(memref_type.getRank(), 1);
    buildAffineLoopNest(
            rewriter, loc, lower_bounds, memref_type.getShape(), steps,
            [&](OpBuilder& nested_builder, Location loc, ValueRange ivs) {
                Value value_to_store =
                        process_iteration(nested_builder, operands, ivs);
                nested_builder.create<AffineStoreOp>(loc, value_to_store, alloc,
                                                     ivs);
            });

    // Replace this operation with the generated alloc.
    rewriter.replaceOp(op, alloc);
}

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
template <typename Op, typename LoweredOp>
struct UnaryOpLowering : public ConversionPattern {
    UnaryOpLowering(MLIRContext* ctx)
            : ConversionPattern(Op::getOperationName(), 1, ctx) {}

    LogicalResult matchAndRewrite(
            Operation* op, ArrayRef<Value> operands,
            ConversionPatternRewriter& rewriter) const final {
        auto loc = op->getLoc();
        lower_op_to_loops(
                op, operands, rewriter,
                [loc](OpBuilder& builder, ValueRange memref_operands,
                      ValueRange loop_ivs) {
                    typename Op::Adaptor binary_adaptor(memref_operands);
                    LoweredOp lower_op;

77 78
                    auto loaded_lhs = get_operand<AffineLoadOp>(
                            builder, loc, binary_adaptor.lhs(), loop_ivs);
79 80 81 82 83 84 85 86 87 88 89 90 91

                    return lower_op(builder, loc, {loaded_lhs});
                });
        return success();
    }
};

#define cb(_op, _) \
    using _op##Lowering = UnaryOpLowering<jit::_op, jit::StandardOp<jit::_op>>;
MLIR_MGB_FOREACH_ELEMWISE_MODE_UNARY(cb)
#undef cb

template <typename Op, typename LoweredOp>
92 93
struct BinaryOpLowering : public ConversionPattern {
    BinaryOpLowering(MLIRContext* ctx)
94
            : ConversionPattern(Op::getOperationName(), 1, ctx) {}
95 96 97 98 99 100 101 102 103

    LogicalResult matchAndRewrite(
            Operation* op, ArrayRef<Value> operands,
            ConversionPatternRewriter& rewriter) const final {
        auto loc = op->getLoc();
        lower_op_to_loops(
                op, operands, rewriter,
                [loc](OpBuilder& builder, ValueRange memref_operands,
                      ValueRange loop_ivs) {
104 105
                    typename Op::Adaptor binary_adaptor(memref_operands);
                    LoweredOp lower_op;
106

107 108 109 110
                    auto loaded_lhs = get_operand<AffineLoadOp>(
                            builder, loc, binary_adaptor.lhs(), loop_ivs);
                    auto loaded_rhs = get_operand<AffineLoadOp>(
                            builder, loc, binary_adaptor.rhs(), loop_ivs);
111

112
                    return lower_op(builder, loc, {loaded_lhs, loaded_rhs});
113 114 115 116
                });
        return success();
    }
};
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

#define cb(_op, _) \
    using _op##Lowering = BinaryOpLowering<jit::_op, jit::StandardOp<jit::_op>>;
MLIR_MGB_FOREACH_ELEMWISE_MODE_BINARY(cb)
#undef cb

template <typename Op, typename LoweredOp>
struct TernaryOpLowering : public ConversionPattern {
    TernaryOpLowering(MLIRContext* ctx)
            : ConversionPattern(Op::getOperationName(), 1, ctx) {}

    LogicalResult matchAndRewrite(
            Operation* op, ArrayRef<Value> operands,
            ConversionPatternRewriter& rewriter) const final {
        auto loc = op->getLoc();
        lower_op_to_loops(
                op, operands, rewriter,
                [loc](OpBuilder& builder, ValueRange memref_operands,
                      ValueRange loop_ivs) {
                    typename Op::Adaptor ternary_adaptor(memref_operands);
                    LoweredOp lower_op;

139 140 141 142 143 144
                    auto loaded_x = get_operand<AffineLoadOp>(
                            builder, loc, ternary_adaptor.x(), loop_ivs);
                    auto loaded_y = get_operand<AffineLoadOp>(
                            builder, loc, ternary_adaptor.y(), loop_ivs);
                    auto loaded_z = get_operand<AffineLoadOp>(
                            builder, loc, ternary_adaptor.z(), loop_ivs);
145 146 147 148 149 150 151 152 153 154 155 156 157 158

                    return lower_op(builder, loc,
                                    {loaded_x, loaded_y, loaded_z});
                });
        return success();
    }
};

#define cb(_op, _)        \
    using _op##Lowering = \
            TernaryOpLowering<jit::_op, jit::StandardOp<jit::_op>>;
MLIR_MGB_FOREACH_ELEMWISE_MODE_TERNARY(cb)
#undef cb

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
struct AssignOpLowering : public ConversionPattern {
    AssignOpLowering(MLIRContext* ctx)
            : ConversionPattern(jit::AssignOp::getOperationName(), 1, ctx) {}

    LogicalResult matchAndRewrite(
            Operation* op, ArrayRef<Value> operands,
            ConversionPatternRewriter& rewriter) const final {
        auto loc = op->getLoc();
        auto memref_type = operands[0].getType().cast<MemRefType>();
        AssignOpAdaptor assign_adaptor(operands);

        SmallVector<int64_t, 4> lower_bounds(memref_type.getRank(), 0);
        SmallVector<int64_t, 4> steps(memref_type.getRank(), 1);
        buildAffineLoopNest(
                rewriter, loc, lower_bounds, memref_type.getShape(), steps,
                [&](OpBuilder& nested_builder, Location loc, ValueRange ivs) {
                    auto loaded_lhs = nested_builder.create<AffineLoadOp>(
                            loc, assign_adaptor.lhs(), ivs);
                    nested_builder.create<AffineStoreOp>(
                            loc, loaded_lhs, assign_adaptor.rhs(), ivs);
                });

        rewriter.eraseOp(op);
        return success();
    }
};

struct ReturnOpLowering : public OpRewritePattern<jit::ReturnOp> {
    using OpRewritePattern<jit::ReturnOp>::OpRewritePattern;

    LogicalResult matchAndRewrite(jit::ReturnOp op,
                                  PatternRewriter& rewriter) const final {
        rewriter.replaceOpWithNewOp<mlir::ReturnOp>(op);
        return success();
    }
};

196 197 198 199 200 201 202 203 204 205 206 207 208
struct ConstantScalarOpLowering
        : public OpRewritePattern<jit::ConstantScalarOp> {
    using OpRewritePattern<jit::ConstantScalarOp>::OpRewritePattern;

    LogicalResult matchAndRewrite(jit::ConstantScalarOp op,
                                  PatternRewriter& rewriter) const final {
        ConstantScalarOpAdaptor constant_scalar_adaptor(op);
        rewriter.replaceOpWithNewOp<mlir::ConstantOp>(
                op, constant_scalar_adaptor.value());
        return success();
    }
};

209 210 211 212 213 214 215 216 217
class MgbToAffineLoweringPass
        : public PassWrapper<MgbToAffineLoweringPass, FunctionPass> {
public:
    void runOnFunction() override final {
        ConversionTarget target(getContext());
        target.addLegalDialect<AffineDialect, StandardOpsDialect>();
        target.addIllegalDialect<MgbDialect>();

        OwningRewritePatternList patterns;
218 219 220 221 222
#define cb(_op, _) _op##Lowering,
        patterns.insert<MLIR_MGB_FOREACH_ELEMWISE_MODE_UNARY(
                                cb) MLIR_MGB_FOREACH_ELEMWISE_MODE_BINARY(cb)
                                MLIR_MGB_FOREACH_ELEMWISE_MODE_TERNARY(cb)
                                        ReturnOpLowering,
223 224
                        AssignOpLowering, ConstantScalarOpLowering>(
                &getContext());
225
#undef cb
226 227 228 229 230 231 232 233 234 235 236 237 238

        if (failed(applyPartialConversion(getFunction(), target, patterns))) {
            signalPassFailure();
        }
    }
};

}  // namespace

std::unique_ptr<mlir::Pass> mgb::jit::create_lower_to_affine_pass() {
    return std::make_unique<MgbToAffineLoweringPass>();
}

M
Megvii Engine Team 已提交
239
#endif  // MGB_JIT && MGB_JIT_MLIR
240 241

// vim: syntax=cpp.doxygen