comp_node.h 26.5 KB
Newer Older
1 2 3 4
/**
 * \file src/core/include/megbrain/comp_node.h
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#pragma once

#include "megbrain/utils/hash.h"
#include "megbrain/utils/metahelper.h"
#include "megbrain/utils/thin/hash_table.h"
#include "megbrain/utils/thread.h"
#include "megbrain/utils/thin/function.h"
#include "megdnn/thin/function.h"

#include <cstddef>
#include <string>
#include <memory>

namespace mgb {

// forward declaration; defined in comp_node_env.h
class CompNodeEnv;

namespace cg {
class ComputingGraph;
}

34
class CompNodeSeqRecorder;
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

/*!
 * \brief identifier for a memory node
 *
 * MemNode is comparable. CompNodes with the same MemNode can access memory of
 * each other directly
 */
class MemNode {
    const void* m_id = nullptr;

    public:
        MemNode() = default;

        explicit MemNode(const void *id):
            m_id{id}
        {}

        bool operator == (const MemNode &rhs) const {
            return m_id == rhs.m_id;
        }

        bool operator != (const MemNode &rhs) const {
            return m_id != rhs.m_id;
        }

        operator bool() const {
            return m_id != nullptr;
        }
};

/*!
 * \brief abstraction of a streaming computing resource on localhost (a
 *      thread on CPU, a cuda stream, etc.)
 *
 * Note that most of the operations are asynchronous with respect to the caller
 * thread
 */
class CompNode {
    public:
        //! computing device type
        enum class DeviceType {
            //! for "xpu" comp node that would mapped to available cn on
            //! current system
            UNSPEC = 0,

            CUDA = 1,
            CPU = 2,
82
            CAMBRICON = 3,
83
            ROCM = 8,
84
            ATLAS = 9,
85
            MULTITHREAD = 11,
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
            MAX_DEVICE_ID,
        };
        static constexpr size_t NR_DEVICE_TYPE =
                static_cast<size_t>(DeviceType::MAX_DEVICE_ID);

        /*!
         * \brief an identifier to specify a computing node
         *
         * Note: logical locator is directly parsed from a string identifier
         * given by user; it should be translated to physical locator by calling
         * to_physical() before actual use.
         *
         * Unless explicitly specified otherwise, all locators are physical
         * locators.
         */
        struct Locator {
            /*!
             * \brief special device number for the "cpu default" comp node,
             *      which dispatches all tasks in the caller thread
             */
            static constexpr int DEVICE_CPU_DEFAULT = -1024;
            /*!
             * \brief special device number for the "multithread_default"
             * comp node, which dispatches all tasks to thread pool and the
             * caller thread is the main thread of thread pool
             */
            static constexpr int DEVICE_MULTITHREAD_DEFAULT = -1025;

            DeviceType type = DeviceType::UNSPEC;

            /*!
             * corresponding to a physical computing device; memories between
             * different devices are not shared.
             *
             * device == -1 means logical default device (maps to 0 by default,
             * and can be changed by set_device_map)
122
             *
123 124 125 126
             */
            int device = -1;

            //! multiple streams can execute on one computing device and share
127 128 129 130 131 132
            //! memory, when compnode type is multithread the field also stand
            //! for nr_threads
            union {
                int stream = 0;
                int nr_threads;
            };
133 134 135 136 137 138 139

            /*!
             * \brief parse a string identifier
             *
             * currently supported ID format: (gpu|cpu)<n>[:m] where n is the
             * device number, possibly with m as the stream id.
             */
140
            static Locator parse(const std::string& id);
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

            /*!
             * \brief set mapping between device numbers of a device type
             */
            static void set_device_map(DeviceType type, int from, int to);

            /*!
             * \brief set the actual device type to be used for
             *      DeviceType::UNSPEC
             */
            static void set_unspec_device_type(DeviceType type);

            /*!
             * \brief get corresponding physical Locator
             *
             * DeviceType::UNSPEC would be resolved, and device map would be
             * applied on device number
             */
            Locator to_physical() const;

            /*!
             * \brief get string description of this locator that can be parsed
             *      again
             */
            std::string to_string() const;

            bool operator == (const Locator &rhs) const {
                return type == rhs.type && device == rhs.device &&
                    stream == rhs.stream;
            }
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

        };

        struct LocatorPairHashKey {
            Locator locator, locator_logical;

            bool operator==(const LocatorPairHashKey& rhs) const {
                return locator == rhs.locator && locator_logical == rhs.locator_logical;
            }

            struct Hash {
                size_t operator()(const LocatorPairHashKey& k) const {
                    return hash_pair_combine(mgb::hash(k.locator),
                                             mgb::hash(k.locator_logical));
                }
            };
187 188 189 190 191 192 193
        };

        //! predefined special streams
        struct Stream {
            static constexpr int
                COPY = -1,
                REMOTE_SEND = -2,
194
                LOOP_SWAP = -3;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
        };

        CompNode() = default;

        /*!
         * \brief manually destroy all comp node resources
         */
        static void finalize();

        /*!
         * \brief load a computing node from logical locator ID;
         * \see Locator::parse
         */
        static CompNode load(const std::string& id) {
            return load(Locator::parse(id));
        }

        /*!
         * \brief create a CompNode object from **logical** locator
         */
        static CompNode load(const Locator& locator) {
            return load(locator.to_physical(), locator);
        }

        static CompNode load(const Locator& locator_physical,
                             const Locator& locator_logical);

        /* =================== memory management ======================== */

        /*!
         * \brief allocate memory on this computing node
         *
         * Note: allocation of device memory is synchronous with the host,
         * meaning that the memory can be used immediately; however deallocation
         * is asynchronous to ensure that the memory can be used by
         * already-launched kernels on the computing node.
         *
         * Exception should be raised if allocation fails.
         */
        void *alloc_device(size_t size) const;

        //! deallocate device buffer; see alloc_device() for more details
        void free_device(void *ptr) const;

        /*!
         * \brief allocate memory on host that is associated with the device,
         *      which may accelerate I/O
         *
         * Both allocation and deallocation on host are synchronous.
         */
        void *alloc_host(size_t size) const;

        void free_host(void *ptr) const;

        //! copy from underlying device to host
        void copy_to_host(
                void *host_ptr, const void *device_ptr, size_t size) const {
            return m_impl->copy_to_host(host_ptr, device_ptr, size);
        }

        //! copy from host to underlying device
        void copy_to_device(
                void *device_ptr, const void *host_ptr, size_t size) const {
            return m_impl->copy_to_device(device_ptr, host_ptr, size);
        }

        /*!
         * \brief copy from this device to another device; would use the
         *      computing resource on dest_node
         * \param src source memory that must be allocated on this device
         */
        void peer_copy_to(CompNode dest_node, void *dest,
                const void *src, size_t size) const {
            return m_impl->peer_copy_to(
                    reinterpret_cast<Impl*>(dest_node.m_impl), dest, src, size);
        }

        //! get alignment requiement in bytes; guaranteed to be power of 2
        size_t get_mem_addr_alignment() const {
            return m_impl->get_mem_addr_alignment();
        }

277 278 279 280 281 282 283 284 285 286 287
        /*!
         * \brief get the size of the paddings which must be reserved at the
         * end of memory chunk; guaranteed to be power of 2
         */
        size_t get_mem_padding() const {
            size_t padding = m_impl->get_mem_padding();
            mgb_assert(!(padding & (padding - 1)),
                       "mem padding should be power of 2");
            return padding;
        }

288 289 290 291 292 293
        /*!
         * \brief release consecutive free chunks on all devices to defragment;
         *      see DevMemAlloc::try_coalesce_free
         */
        static void try_coalesce_all_free_memory();

294 295 296 297 298 299 300 301
        /*
        * \brief specifies how to pre-allocate from raw dev allocator
        *
        */
        static void set_prealloc_config(size_t alignment, size_t min_req,
                                        size_t max_overhead, double growth_factor,
                                        DeviceType device_type);

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
        /* =================== synchronization ======================== */

        class Event;
        class EventPool;

        std::unique_ptr<Event> create_event(size_t flags = 0) const {
            return m_impl->create_event(flags);
        }

        //! wait for an event created on another CompNode
        inline void device_wait_event(Event &event) const;

        /*!
         * \brief block host thread to wait for all previous operations on this
         *      computing node to finish
         */
        void sync() const {
            return m_impl->sync();
        }

        /*!
         * \brief synchronize all computing nodes
         */
        static void sync_all();

        /* =================== misc ======================== */

        /*!
         * \brief get id of underlying memory node; comp nodes that share the
         *      same mem node can access memory allocated by each other.
         */
        MemNode mem_node() const {
            return m_impl->mem_node();
        }

        bool operator == (const CompNode &rhs) const {
            return m_impl == rhs.m_impl;
        }

        bool operator != (const CompNode &rhs) const {
            return !this->operator==(rhs);
        }

        bool valid() const {
            return m_impl;
        }

        //! get total and free memory on the computing device in bytes
        std::pair<size_t, size_t> get_mem_status_bytes() const {
            return m_impl->get_mem_status_bytes();
        }

354
#if !MGB_BUILD_SLIM_SERVING
355 356 357 358
        std::pair<size_t, size_t> get_free_left_and_right(size_t begin_ptr, size_t end_ptr) {
            return m_impl->get_free_left_and_right(begin_ptr, end_ptr);
        }

359 360 361
        size_t get_used_memory() const {
            return m_impl->get_used_memory();
        }
362 363 364 365

        size_t get_max_block_size_available() const {
            return m_impl->get_max_block_size_available();
        }
366 367
#endif

368 369 370 371 372 373 374 375 376 377 378 379 380
        //! change to another stream on the same memory node
        CompNode change_stream(int dest_stream) const;

        //! get string representation of physical device
        std::string to_string() const {
            return m_impl ? m_impl->locator().to_string() : "invalid";
        }

        //! get string representation of logical device
        std::string to_string_logical() const {
            return m_impl ? m_impl->locator_logical().to_string() : "invalid";
        }

381 382 383 384
        uint64_t get_uid() {
            return m_impl->get_uid();
        }

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
        //! get the physical locator that created this comp node
        Locator locator() const {
            return m_impl->locator();
        }

        //! get the logical locator that created this comp node
        Locator locator_logical() const {
            return m_impl->locator_logical();
        }

        //! see CompNodeEnv::activate
        void activate() const;

        //! get device type of this comp node
        DeviceType device_type() const;

        /*!
         * \brief check for error on the asynchronous computing stream
         *
         * This is used for devices with limited error handling such as CUDA.
         *
         * It will return MegBrainError with error messages rather than
         * directly throw exception; return nullptr if no error.
         */
        MGB_WARN_UNUSED_RESULT
        std::unique_ptr<MegBrainError> check_async_error() const;

        /*!
         * \brief create a CompNodeSeqRecorder associated with this computing
         * node
         *
         * Note: the implementation must be thread safe: simultaneous calls to
         * create_seq_recorder() must block until existing CompNodeSeqRecorder
         * objects are either destructed or stopped.
         *
         * \return the recorder object; nullptr is returned if recording is not
         *      supported
         */
        std::unique_ptr<CompNodeSeqRecorder> create_seq_recorder(
                cg::ComputingGraph* cg) {
            return m_impl->create_seq_recorder(cg);
        }

        /*!
         *  insert callback into current compute stream.
         *  The callack is to be called after all currently enqueued
         *  iterms in the stream have completed. And the later tasks
         *  in the stream must wait for the callback to finish.
         */
        void add_callback(megdnn::thin_function<void()>&& cb) {
            return m_impl->add_callback(std::move(cb));
        }

        enum class Flag : uint32_t {
            //! Whether computing recorder is supported on this comp node (i.e.
            //! whether non-zero comp_node_seq_record_level is allowed)
            SUPPORT_RECORDER = 1 << 0,

            //! Whether dynamic memory allocation is supported in seq recorder.
            //! If this flag is not setted, ComputingSequence::do_execute()
            //! would skip the warm up and allow seq recorder to start
            //! immediately
            RECORDER_SUPPORT_DYNAMIC_ALLOC = 1 << 1,

            //! Whether the capacity of the asynchronous execution queue on this
            //! comp node is limited.
            //! If this flag is set, tasks on multiple comp nodes would be
            //! dispatched from multiple cpu threads.
            //! \see ComputingGraph::Options::async_exec_level
            QUEUE_LIMITED = 1 << 2,

            //! Whether this comp node supports copy stream, so computation and
            //! I/O can be parallelized
            HAS_COPY_STREAM = 1 << 3,

            //! Destructing an event is unsafe if the comp node is not
            //! synchronized; setting this flag would cause computing sequence
            //! to sync the comp node in its dtor.
            EVENT_DTOR_UNSAFE = 1 << 4,

            //! CompNode is available even there is no thread support, i.e.
            //! MGB_HAVE_THREAD=0. Usually this means that execution on the
            //! CompNode is synchronous, i.e. behaves like cpu:default
            SUPPORT_NO_THREAD = 1 << 5,
469 470 471 472

            //! Whether this comp node supports unified address. i.e. CPU and
            //! CUDA supports unified address.
            SUPPORT_UNIFIED_ADDRESS = 1 << 6,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
        };

        bool contain_flag(Flag flag) {
            return contain_flag(device_type(), flag);
        }

        static bool contain_flag(DeviceType device_type, Flag flag);

        using UnorderedSet = ThinHashSet<CompNode>;

        template<typename T>
        using UnorderedMap = ThinHashMap<CompNode, T>;

        //! apply function to each initialized comp node
        static void foreach(thin_function<void(CompNode)> callback);

        //! get total number of specific devices on this system
        static size_t get_device_count(DeviceType type, bool warn=true);

        /* =================== specialized ======================== */

        //! get default CPU comp node
        // implemented in comp_node/cpu/comp_node.cpp
        static CompNode default_cpu();

        /*!
         * \brief set whether to enable affinity setting for CPU comp nodes
         *
         * If enabled, computation on cpux would be bound to the x'th CPU.
         *
         * This is disabled by default.
         *
         * (implemented in comp_node/cpu/comp_node.cpp)
         *
         * \return original setting
         */
        static bool enable_affinity_for_cpu(bool flag);

    protected:
        //! ImplBase with env(); defined in CompNodeEnv
        class Impl;

        class ImplBase: public NonCopyableObj, public DynTypeObj {
            public:
                typedef void (*free_func_t)(ImplBase* self, void* ptr);
                //! memory free might be called after finalize(); so we should
                //! not rely on virtual function for this
                const free_func_t free_device;
                const free_func_t free_host;

                virtual void* alloc_device(size_t size) = 0;
                virtual void *alloc_host(size_t size) = 0;

                virtual void copy_to_host(void *host_ptr,
                        const void *device_ptr, size_t size) = 0;
                virtual void copy_to_device(void *device_ptr,
                        const void *host_ptr, size_t size) = 0;
                virtual void peer_copy_to(
                        Impl *dest_impl, void *dest,
                        const void *src, size_t size) = 0;

                virtual size_t get_mem_addr_alignment() = 0;
535
                virtual size_t get_mem_padding();
536 537 538 539 540 541 542 543

                virtual std::unique_ptr<Event> create_event(size_t flags) = 0;

                virtual void sync() = 0;

                virtual MemNode mem_node() = 0;
                virtual std::pair<size_t, size_t> get_mem_status_bytes() = 0;

544
#if !MGB_BUILD_SLIM_SERVING
545 546 547
                virtual std::pair<size_t, size_t> get_free_left_and_right(size_t x, size_t y) {
                    return {x - x, y - y};
                }
548 549 550
                virtual size_t get_used_memory() {
                    return 0;
                }
551 552 553
                virtual size_t get_max_block_size_available() {
                    return 0;
                }
554 555
#endif

556 557 558 559 560 561 562 563
                virtual Locator locator() = 0;
                virtual Locator locator_logical() = 0;

                virtual std::unique_ptr<CompNodeSeqRecorder>
                    create_seq_recorder(cg::ComputingGraph* cg);

                virtual void add_callback(megdnn::thin_function<void()>&&);

564 565 566 567
                virtual uint64_t get_uid() {
                    mgb_throw(MegBrainError, "get_uid is not impl yet");
                };

568 569 570 571 572 573 574 575 576 577 578 579 580
            protected:
                ImplBase(free_func_t fd, free_func_t fh)
                        : free_device{fd}, free_host{fh} {}

                ~ImplBase() = default;
        };

        //! implementations are allocated statically, so no memory management
        //! is needed
        ImplBase *m_impl = nullptr;

        friend class CompNodeEnv;
        friend struct HashTrait<CompNode>;
581
        friend struct HashTrait<CompNode::Locator>;
582
        friend class CompNodeImplHelper;
583 584
    public:
        CompNode(ImplBase* impl) : m_impl{impl} {}
585 586 587 588 589
};


MGB_DEF_ENUM_CLASS_BIT_OPR(CompNode::Flag)

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
/*!
 * \brief record computation operations on a computing node
 *
 * This is used for fast execution of an identical computation sequence where
 * only input/output data differ.
 *
 * When this object is created from a comp node, recording starts immediately.
 * Call stop() when computation finishes, and call replay() when it needs to be
 * re-executed.
 *
 * Implementations should consider thread safe in comp_node, in order to support
 * multi threads reording in the same comp_node simultaneously, using thread
 * local recorder in comp_node.
 *
 * Note. When recording is over, the recorder is independent with comp_node, so
 * the task dispatched into recorder should not related to the comp_node
 * methord, and the thread of recorder replay is the user thread.
 */
class CompNodeSeqRecorder {
public:
    virtual ~CompNodeSeqRecorder() noexcept = default;

    /*!
     * \brief Enter fake-exec mode
     *
     * Memory allocation/free is only allowed in fake-exec mode, and kernels
     * should not be actually recorded in this mode.
     *
     * This should be paired with exit_fake_exec()
     */
    virtual void enter_fake_exec(const CompNode& comp_node) = 0;

    //! Exit fake-exec mode
    virtual void exit_fake_exec(const CompNode& comp_node) = 0;

    virtual void stop(const CompNode& comp_node) = 0;
626

627 628 629
    virtual void replay() = 0;
};

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
/*!
 * \brief event associated with a CompNode node, used for cross-device
 *      synchronization
 */
class CompNode::Event: public NonCopyableObj {
    protected:
        static int sm_cpu_sync_level;

        //! flags when this event is created
        size_t const m_create_flags;

        Event(size_t create_flags):
            m_create_flags{create_flags}
        {
        }

    public:
        enum Flags {
            NEED_TIMER = 1
        };

        virtual ~Event() = default;

        /*!
         * \brief record this event on the comp node that creates it
         *
         * Note that if a comp node is recorded multiple times, then subsequent
         * calls would overwrite its internal state and other methods that
         * examine the status would only examine the completion of the most
         * recent call to record().
         */
        virtual void record() = 0;

        //! whether this event has finished; it must has been recorded
        virtual bool finished() = 0;

        //! block the host thread (caller thread) to wait for this event
        virtual void host_wait() = 0;

        //! get elapsed time in seconds from this to another event; the events
        //! must be finished
        virtual double elapsed_time_until(Event &end) = 0;

        //! record an action on another comp node so it would wait for this
        //! event
        virtual void device_wait_by(CompNode cn) = 0;

        //! get the comp node to which this event is associated
        virtual CompNode comp_node() const = 0;

        //! flags when this event is created
        size_t create_flags() const {
            return m_create_flags;
        }

        /*!
         * \brief set CPU resource usage level when performing synchronization
         * \param level CPU waiting level:
         *      0. condition var (the default)
         *      1. busy wait with yield
         *      2. busy wait
         */
        static void set_cpu_sync_level(int level) {
            sm_cpu_sync_level = level;
        }
};

/*!
 * \brief pool of events that can be reused
 */
class CompNode::EventPool {
    CompNode m_cn;
    std::vector<std::unique_ptr<CompNode::Event>> m_allocated;
    std::vector<CompNode::Event*> m_free;
    Spinlock m_lock;
705
    size_t m_flags;
706 707

    public:
708
        explicit EventPool(CompNode cn, size_t flags = 0);
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
        ~EventPool();

        CompNode::Event* alloc();

        void free(CompNode::Event *ev);

        //! assert that all allocated events have been freed
        void assert_all_freed();
};

void CompNode::device_wait_event(Event &event) const {
    event.device_wait_by(*this);
}

template<>
struct HashTrait<CompNode> {
    static size_t eval(const CompNode &val) {
        static_assert(sizeof(size_t) == sizeof(void*), "bad hash type");
        return reinterpret_cast<size_t>(static_cast<void*>(val.m_impl));
    }
};

731 732 733 734 735 736 737 738 739
template<>
struct HashTrait<CompNode::Locator> {
    static size_t eval(const CompNode::Locator &val) {
        return static_cast<size_t>(val.device)
            + (static_cast<size_t>(val.type) << 4)
            + (static_cast<size_t>(val.stream) << 8);
    }
};

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
namespace comp_node_detail {

/*!
 * \brief an inplace doubly linked list for efficient inserting/deleting
 *
 * Note: do not use this directly; it is only for CompNodeDepedentObject
 */
class DepedentObjList {
    class Sentinel;

    struct StaticInfo;
    static StaticInfo sm_info;

    DepedentObjList *m_prev = nullptr, *m_next = nullptr;

    static void link(DepedentObjList* a, DepedentObjList* b) {
        a->m_next = b;
        b->m_prev = a;
    }

protected:
    virtual std::shared_ptr<void> callback() = 0;
    ~DepedentObjList() = default;

    static void add(DepedentObjList* ptr);
    static void remove(DepedentObjList* ptr);

public:
    static void invoke_callback_and_clean();
};

}  // namespace comp_node_detail

/*!
 * \brief base class for objects that depend on CompNode
 *
 * There is a CompNode::finalize() method that destorys all global comp nodes.
 * Therefore objects that depend on CompNode should all be marked as invalid at
 * that time.
 *
 * CompNode::finalize() is called in atexit() because some external libraries
 * that CompNode depends on seems to be registering exit handlers. It is also
 * impractical to require a correct destruction order because, for example, in
 * python atexit() handlers are invoked before global python objects get
 * reclaimed.
 *
 * As a result we give up enforcing a correct destruction order, but rather
 * require all CompNode-dependent objects to derive from this class so they can
 * get notified possibly do most of the cleanup when CompNode is finalized.
 */
class CompNodeDepedentObject : private comp_node_detail::DepedentObjList {
    //! 1: in on_comp_node_finalize(); 2: after on_comp_node_finalize()
    int m_state = 0;
    std::shared_ptr<void> callback() override final;

protected:
    CompNodeDepedentObject() { add(this); }
    ~CompNodeDepedentObject() { remove(this); }

    /*!
     * \brief overwritten by subclasses to perform clean up jobs
     *
     * Note: in case the object has nested objects which hold a reference to the
     * object itself, a reference to this object must be kept so it would not be
     * released during the call of on_comp_node_finalize().
     */
    virtual std::shared_ptr<void> on_comp_node_finalize() = 0;

    //! exception would thrown if on_comp_node_finalize() has been called (do
    //! not raise if invoked from on_comp_node_finalize())
    void check_not_finalized() const;

    //! whether on_comp_node_finalize() has been called (true when invoked
    //! from on_comp_node_finalize())
    bool is_finalized() const { return m_state; }
};

} // namespace mgb

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}