helper.cpp 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/**
 * \file test/src/helper.cpp
 *
 * This file is part of MegBrain, a deep learning framework developed by Megvii.
 *
 * \copyright Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 */

#include "./rng_seed.h"

#include "megbrain/test/helper.h"
#include "megbrain/utils/hash.h"
#include "megbrain/utils/debug.h"
#include "megbrain/utils/persistent_cache.h"
#include "megbrain/comp_node_env.h"

#include <atomic>
#include <random>

#include <cmath>
#include <cstring>
#include <cstdlib>

#if MGB_CUDA
#include <cuda.h>
#include <cuda_runtime.h>
#endif

using namespace mgb;

const dt_qint8 UniformRNGDefaultRange<dtype::QuantizedS8>::LO = dt_qint8{-128};
const dt_qint8 UniformRNGDefaultRange<dtype::QuantizedS8>::HI = dt_qint8{127};

bool megdnn::operator == (const TensorLayout &a, const TensorLayout &b) {
    if (a.ndim != b.ndim)
        return false;
    // check all shapes and strides equal, including shape-1 dims
    for (size_t i = 0; i < a.ndim; ++ i) {
        if (a[i] != b[i] || a.stride[i] != b.stride[i])
            return false;
    }
    return true;
}

uint64_t mgb::next_rand_seed() {
    return RNGSeedManager::inst().next_seed();
}

void mgb::set_rand_seed(uint64_t seed) {
    RNGSeedManager::inst().set_seed(seed);
}

RNGxorshf::RNGxorshf(uint64_t seed) {
    std::mt19937_64 gen(seed);
    s[0] = gen();
    s[1] = gen();
}


/* ========================== HostTensorGenerator ========================== */
template<typename dtype>
std::shared_ptr<HostTensorND> HostTensorGenerator<
dtype, RandomDistribution::GAUSSIAN>::operator ()(
        const TensorShape &shape, CompNode cn) {
    if (!cn.valid())
        cn = CompNode::load("xpu0");
    std::shared_ptr<HostTensorND> ret =
        std::make_shared<HostTensorND>(cn, shape, dtype());
    auto ptr = ret->ptr<ctype>();
    auto mean = m_mean, std = m_std;
    for (size_t i = 0, it = shape.total_nr_elems(); i < it; i += 2) {
73 74
        ctype u1 = ctype((m_rng() + 1.0) / (m_rng.max() + 1.0)),
              u2 = ctype((m_rng() + 1.0) / (m_rng.max() + 1.0)),
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
              r = ctype(std * std::sqrt(-2 * std::log(u1))),
              theta = ctype(2 * M_PI * u2),
              z0 = ctype(r * std::cos(theta) + mean),
              z1 = ctype(r * std::sin(theta) + mean);
        ptr[i] = z0;
        ptr[std::min(i + 1, it - 1)] = z1;
    }
    return ret;
}

template<typename dtype>
std::shared_ptr<HostTensorND> HostTensorGenerator<
dtype, RandomDistribution::UNIFORM>::operator ()(
        const TensorShape &shape, CompNode cn) {
    if (!cn.valid())
        cn = CompNode::load("xpu0");
    std::shared_ptr<HostTensorND> ret =
        std::make_shared<HostTensorND>(cn, shape, dtype());
    auto ptr = ret->ptr<ctype>();
    double scale = (m_hi - m_lo) / (m_rng.max() + 1.0);
    for (size_t i = 0, it = shape.total_nr_elems(); i < it; ++ i) {
        ptr[i] = m_rng() * scale + m_lo;
    }
    return ret;
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
template<typename dtype>
std::shared_ptr<HostTensorND> HostTensorGenerator<
dtype, RandomDistribution::CONSTANT>::operator ()(
        const TensorShape &shape, CompNode cn) {
    if (!cn.valid())
        cn = CompNode::load("xpu0");
    std::shared_ptr<HostTensorND> ret =
        std::make_shared<HostTensorND>(cn, shape, dtype());
    auto ptr = ret->ptr<ctype>();
    for (size_t i = 0, it = shape.total_nr_elems(); i < it; ++ i) {
        ptr[i] = m_default_val;
    }
    return ret;
}


117 118 119 120 121 122
// explicit instantialization of HostTensorGenerator
namespace mgb {
    template class HostTensorGenerator<
        dtype::Float32, RandomDistribution::GAUSSIAN>;
    template class HostTensorGenerator<
        dtype::Float32, RandomDistribution::UNIFORM>;
123 124
    template class HostTensorGenerator<
        dtype::Float32, RandomDistribution::CONSTANT>;
125 126
    template class HostTensorGenerator<
        dtype::Float16, RandomDistribution::GAUSSIAN>;
127 128
    template class HostTensorGenerator<
        dtype::Int8, RandomDistribution::UNIFORM>;
129 130
    template class HostTensorGenerator<
        dtype::Int8, RandomDistribution::CONSTANT>;
131 132
    template class HostTensorGenerator<
        dtype::Uint8, RandomDistribution::UNIFORM>;
133 134
    template class HostTensorGenerator<
        dtype::Uint8, RandomDistribution::CONSTANT>;
135 136
    template class HostTensorGenerator<
        dtype::Int16, RandomDistribution::UNIFORM>;
137 138
    template class HostTensorGenerator<
        dtype::Int16, RandomDistribution::CONSTANT>;
139 140
    template class HostTensorGenerator<
        dtype::Int32, RandomDistribution::UNIFORM>;
141 142
    template class HostTensorGenerator<
        dtype::Int32, RandomDistribution::CONSTANT>;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    std::shared_ptr<HostTensorND>
    HostTensorGenerator<dtype::QuantizedS8, RandomDistribution::UNIFORM>::
    operator()(const TensorShape& shape, CompNode cn) {
        if (!cn.valid())
            cn = CompNode::load("xpu0");
        auto dtype = dtype::QuantizedS8(m_scale);
        auto param = dtype.param();
        std::shared_ptr<HostTensorND> ret =
                std::make_shared<HostTensorND>(cn, shape, dtype);
        auto ptr = ret->ptr<dt_qint8>();
        double scale = (param.dequantize(m_hi) - param.dequantize(m_lo)) /
                       (m_rng.max() + 1.0);
        for (size_t i = 0, it = shape.total_nr_elems(); i < it; ++i) {
            ptr[i] = param.quantize(m_rng() * scale + param.dequantize(m_lo));
        }
        return ret;
    }
}

::testing::AssertionResult mgb::__assert_float_equal(
        const char *expr0, const char *expr1, const char * /*expr_maxerr*/,
        float v0, float v1, float maxerr) {
    float err = fabs(v0 - v1) / std::max<float>(
            1, std::min(fabs(v0), fabs(v1)));
    if (std::isfinite(v0) && std::isfinite(v1) && err < maxerr) {
        return ::testing::AssertionSuccess();
    }
    return ::testing::AssertionFailure() << ssprintf(
            "Value of: %s\n"
            "  Actual: %.6g\n"
            "Expected: %s\n"
            "Which is: %.6g\n"
            "   Error: %.4e", expr1, v1, expr0, v0, err);
}

::testing::AssertionResult mgb::__assert_tensor_equal(
        const char *expr0, const char *expr1, const char * /*expr_maxerr*/,
        const HostTensorND &v0, const HostTensorND &v1, float maxerr) {
    auto ret = debug::compare_tensor_value(v0, expr0, v1, expr1, maxerr);
    if (ret.valid())
        return ::testing::AssertionFailure() << ret.val();
    return ::testing::AssertionSuccess();
}

187 188 189 190 191 192 193 194 195 196
::testing::AssertionResult mgb::__assert_shape_equal(const TensorShape& v0,
                                                const TensorShape& v1) {
    if (v0.eq_shape(v1))
        return ::testing::AssertionSuccess()
                << v0.to_string() << " == " << v1.to_string();
    else
        return ::testing::AssertionFailure()
                << v0.to_string() << " != " << v1.to_string();
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
#if WIN32
#include <io.h>
#include <fcntl.h>
#include <direct.h>
#define getcwd _getcwd
namespace {
    auto mkdir(const char *path, int) {
        return _mkdir(path);
    }

    int mkstemp(char *tpl){
        tpl = _mktemp(tpl);
        mgb_assert(tpl);
        auto fd = _open(tpl, _O_TEMPORARY | _O_RDWR);
        mgb_assert(fd > 0, "failed to open %s: %s", tpl, strerror(errno));
        return fd;
    }
}
#else
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#endif


NamedTemporaryFile::NamedTemporaryFile()
{
    char name[256];
    strcpy(name, output_file("mgb-test-XXXXXX", false).c_str());
    m_fd = mkstemp(name);
    mgb_throw_if(m_fd == -1, MegBrainError,
            "failed to open temp file `%s': %m", name);
    m_fpath = name;
    mgb_log_debug("opened temporary file: %s", name);
}

NamedTemporaryFile::~NamedTemporaryFile() {
#ifdef WIN32
    _unlink(m_fpath.c_str());
#else
    unlink(m_fpath.c_str());
#endif
}

#if defined(IOS)
#pragma message "build test on iOS; need ios_get_mgb_output_dir() to be defined"
extern "C" void ios_get_mgb_output_dir(char **dir);
#endif

std::string mgb::output_file(const std::string &fname, bool check_writable) {
    static std::string cwd;
    static std::mutex cwd_mtx;
    MGB_LOCK_GUARD(cwd_mtx);
    if (cwd.empty()) {
#if defined(IOS)
        char *buf = nullptr;
        ios_get_mgb_output_dir(&buf);
#else
        auto buf = getcwd(nullptr, 0);
#endif
        mgb_assert(buf);
        cwd = buf;
        free(buf);
        cwd.append("/output");
        mgb_log("use test output dir: %s", cwd.c_str());
        mkdir(cwd.c_str(), 0755);
    }
    if (fname.empty())
        return cwd;
    auto ret = cwd + "/" + fname;
    if (check_writable) {
        FILE *fout = fopen(ret.c_str(), "w");
        mgb_assert(fout, "failed to open %s: %s", ret.c_str(), strerror(errno));
        fclose(fout);
    }
    return ret;
}

std::vector<CompNode> mgb::load_multiple_xpus(size_t num) {
    auto cn0 = CompNode::load("xpu0");
    if (CompNode::get_device_count(cn0.device_type()) < num) {
        cn0 = CompNode::load("cpu0");
    }
    std::vector<CompNode> ret{cn0};
    auto loc = cn0.locator();
    for (size_t i = 1; i < num; ++ i) {
        loc.device = i;
        ret.push_back(CompNode::load(loc));
    }
    return ret;
}

bool mgb::check_gpu_available(size_t num) {
    if (CompNode::get_device_count(CompNode::DeviceType::CUDA) < num) {
        mgb_log_warn("skip test case that requires %zu GPU(s)", num);
        return false;
    }
    return true;
}



bool mgb::check_compute_capability(int major, int minor) {
#if MGB_CUDA
    int dev;
    MGB_CUDA_CHECK(cudaGetDevice(&dev));
    cudaDeviceProp prop;
    MGB_CUDA_CHECK(cudaGetDeviceProperties(&prop, dev));
    return prop.major > major || (prop.major == major && prop.minor >= minor);
#else
    MGB_MARK_USED_VAR(major);
    MGB_MARK_USED_VAR(minor);
    return false;
#endif
}

void mgb::write_tensor_to_file(const HostTensorND &hv,
        const char *fname, char mode) {
    mgb_assert(hv.layout().is_contiguous());
    char modefull[] = {mode, 'b', '\x00'};
    FILE *fout = fopen(fname, modefull);
    mgb_assert(fout, "failed to open %s: %s", fname, strerror(errno));
    fprintf(fout, "%s %zu", hv.dtype().name(), hv.shape().ndim);
    for (size_t i = 0; i < hv.shape().ndim; ++ i) {
        fprintf(fout, " %zu", hv.shape(i));
    }
    fprintf(fout, "\n");
    auto size = hv.layout().span().dist_byte();
    auto wr = fwrite(hv.raw_ptr(), 1, size, fout);
    mgb_assert(size == wr);
    mgb_log("write tensor: %zu bytes (%s) to %s", size,
            hv.shape().to_string().c_str(), fname);
    fclose(fout);
}

cg::ComputingGraph::OutputSpecItem
mgb::make_callback_copy(SymbolVar dev, HostTensorND &host, bool sync) {
    auto cb = [sync, &host](DeviceTensorND &d) {
        host.copy_from(d);
        if (sync) {
            host.sync();
        }
    };
    return {dev, cb};
}

/* ========================== PersistentCacheHook ========================== */
class PersistentCacheHook::HookedImpl final : public PersistentCache {
    GetHook m_on_get;

public:
    std::shared_ptr<PersistentCache> orig_impl;

    HookedImpl(GetHook on_get) : m_on_get{std::move(on_get)} {}

    Maybe<Blob> get(const std::string& category, const Blob& key) override {
        auto ret = orig_impl->get(category, key);
        m_on_get(category, key.ptr, key.size, ret.valid() ? ret->ptr : 0,
                 ret.valid() ? ret->size : 0);
        return ret;
    }

    void put(const std::string& category, const Blob& key,
             const Blob& value) override {
        orig_impl->put(category, key, value);
    }
};

PersistentCacheHook::PersistentCacheHook(GetHook on_get)
        : m_impl{std::make_shared<HookedImpl>(std::move(on_get))} {
    m_impl->orig_impl = PersistentCache::set_impl(m_impl);
}

PersistentCacheHook::~PersistentCacheHook() {
    PersistentCache::set_impl(std::move(m_impl->orig_impl));
}

#if !MGB_ENABLE_EXCEPTION
#pragma message "some tests would be disabled because exception is disabled"
#endif

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}