persistent_cache.cpp 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/**
 * \file src/core/impl/utils/persistent_cache.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/utils/persistent_cache.h"
#include "megbrain/comp_node_env.h"

#include <cstdio>
#include <cstring>

#ifdef WIN32
#define snprintf _snprintf
#endif

#if MGB_CUDA
#include <cuda_runtime_api.h>
#endif

using namespace mgb;

namespace {

    class InMemoryPersistentCache final: public PersistentCache {
        struct BlobStorage: public Blob {
            std::unique_ptr<uint8_t[]> data_refhold;
            size_t hash = 0;

            BlobStorage& init_data_ref(const Blob &b) {
                data_refhold = std::make_unique<uint8_t[]>(b.size + 1);
                memcpy(data_refhold.get(), b.ptr, b.size);
                data_refhold.get()[b.size] = 0;   // for C-string safety
                ptr = data_refhold.get();
                size = b.size;
                return *this;
            }

            BlobStorage& init_hash() {
                hash = XXHash{}.update(ptr, size).digest();
                return *this;
            }

            bool operator == (const BlobStorage &rhs) const {
                return size == rhs.size && !memcmp(ptr, rhs.ptr, size);
            }

            struct Hash {
                size_t operator() (const BlobStorage &b) const {
                    return b.hash;
                }
            };
        };
        std::unordered_map<std::string,
            std::unordered_map<BlobStorage, BlobStorage, BlobStorage::Hash>>
                m_cache;
        std::mutex m_mtx;

        Maybe<Blob> get(const std::string& category, const Blob& key) override {
            decltype(m_cache.begin()) iter0;
            {
                MGB_LOCK_GUARD(m_mtx);
                iter0 = m_cache.find(category);
                if (iter0 == m_cache.end())
                    return None;
            }

            BlobStorage key_storage;
            key_storage.Blob::operator=(key);
            key_storage.init_hash();

            MGB_LOCK_GUARD(m_mtx);

            auto iter1 = iter0->second.find(key_storage);
            if (iter1 == iter0->second.end())
                return None;
            return iter1->second;
        }

        void put(const std::string& category, const Blob& key,
                 const Blob& value) override {
            BlobStorage key_storage;
            key_storage.init_data_ref(key).init_hash();

            MGB_LOCK_GUARD(m_mtx);
            auto size0 = m_cache.size();
            m_cache[category][std::move(key_storage)].init_data_ref(value);
            if (m_cache.size() > size0) {
                mgb_log_debug("new cache category: %s", category.c_str());
            }
        }
    };
}
std::shared_ptr<PersistentCache> PersistentCache::sm_impl =
std::make_shared<InMemoryPersistentCache>();

std::shared_ptr<PersistentCache> PersistentCache::set_impl(
        std::shared_ptr<PersistentCache> impl) {
    mgb_assert(impl);
    sm_impl.swap(impl);
    return impl;
}

std::string PersistentCache::make_category_from_comp_node(CompNode comp_node) {
    auto&& env = CompNodeEnv::from_comp_node(comp_node);
    switch (env.property().type) {
#if MGB_CUDA
        case CompNode::DeviceType::CUDA: {
            int drv = -1, cuda_rt = -1;
            MGB_CUDA_CHECK(cudaDriverGetVersion(&drv));
            MGB_CUDA_CHECK(cudaRuntimeGetVersion(&cuda_rt));
            auto&& prop = env.cuda_env().device_prop;
            // note: we do not contain library versions such as cudnn here. They
            // are handled by opr impls in MegDNN
            return ssprintf("plat=cuda;dev=%s;cap=%d.%d,drv=%d;runtime=%d",
                            prop.name, prop.major, prop.minor, drv, cuda_rt);
            break;
        }
#endif
        case CompNode::DeviceType::CPU:
            return "plat=cpu";
        default:
            mgb_throw(MegBrainError,
                      "unsupported comp node for persistent cache category");
    }
}

AlgoChooserProfileCache::AlgoChooserProfileCache(
        CompNode cn, const char *opr_type) {
    m_category = "profile:";
    m_category.append(PersistentCache::make_category_from_comp_node(cn));
    m_category.append(":");
    m_category.append(opr_type);
}

#define ENTRY_FMT ":%d;%lg;%zu:"

Maybe<AlgoChooserProfileCache::Result>
AlgoChooserProfileCache::get(const Key &key) {
    auto raw_buf = PersistentCache::inst().get(m_category, key.build_blob());
    if(!raw_buf.valid())
        return None;
    mgb_assert(raw_buf->size <= 1024 * 1024,
            "buf size too large, maybe corrupted data: %p %zu",
            raw_buf->ptr, raw_buf->size);
    auto buf = static_cast<const uint8_t*>(raw_buf->ptr),
         buf_end = buf + raw_buf->size;
    mgb_assert(buf && buf < buf_end,
            "PersistentCache returned invalid value: ptr=%p size=%zu",
            raw_buf->ptr, raw_buf->size);
    auto read_uint32 = [&]() {
        auto next = buf + sizeof(uint32_t);
        mgb_assert(next <= buf_end);
        auto ret = *reinterpret_cast<const uint32_t*>(buf);
        buf = next;
        return ret;
    };

    auto ret_size = read_uint32();
    mgb_assert(static_cast<ptrdiff_t>(ret_size) < buf_end - buf,
            "result size too large (%u), maybe corrupted data",
            ret_size);
    Result ret(ret_size);
    for (auto &&i: ret) {
        // read algo name
        auto size = read_uint32();
        i.algo.resize(size);
        mgb_assert(buf + size < buf_end);
        memcpy(&i.algo[0], buf, size);
        buf += size;

        auto entry_len = read_uint32();
        mgb_assert(buf + entry_len <= buf_end);
        auto nr = sscanf(reinterpret_cast<const char*>(buf), ENTRY_FMT,
180
                         &i.reproducible, &i.time, &i.workspace);
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
        mgb_assert(nr == 3);
        buf += entry_len;
    }
    mgb_assert(buf == buf_end);
    return ret;
}

void AlgoChooserProfileCache::put(const Key &key, Result &result) {
    mgb_assert(!result.empty());
    auto result_cmp = [](const ResultEntry &a, const ResultEntry &b) {
        return a.time < b.time ||
            (a.time == b.time && a.workspace < b.workspace);
    };
    small_sort(result.begin(), result.end(), result_cmp);

    // remove algos that run slower but use more workspace
    for (size_t i = 1; i < result.size(); ) {
        auto &&prev = result[i - 1];
        auto &&cur = result[i];

        if (prev.workspace <= cur.workspace &&
                prev.reproducible == cur.reproducible) {
            result.erase(result.begin() + i);
        } else {
            ++ i;
        }
    }

    std::string val;
    val.reserve((sizeof(ResultEntry) - sizeof(std::string)) * 2 * result.size());
    auto write_uint32 = [&](uint32_t v) {
        val.append(reinterpret_cast<const char*>(&v), sizeof(v));
    };
    write_uint32(result.size());
    constexpr int SPR_SIZE = 100;
    for (auto &&i: result) {
        // write algo
        write_uint32(i.algo.size());
        auto pos = val.size();
        val.resize(pos + i.algo.size());
        memcpy(&val[pos], i.algo.data(), i.algo.size());

        // write others
        write_uint32(0);
        pos = val.size();
        val.resize(pos + SPR_SIZE);
        uint32_t nr = snprintf(&val[pos], SPR_SIZE,
                ENTRY_FMT, i.reproducible, i.time, i.workspace);
229 230
        //! for memory boundary failed, snprintf ret do not contain \0
        nr += 1;
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        mgb_assert(nr < SPR_SIZE);
        memcpy(&val[pos - sizeof(uint32_t)], &nr, sizeof(nr));
        val.resize(pos + nr);
    }

    PersistentCache::inst().put(m_category, key.build_blob(),
            {val.data(), val.size()});
}

PersistentCache::Blob AlgoChooserProfileCache::Key::build_blob() const {
    auto &&ret = m_blob_storage;
    if (!m_blob_storage.empty())
        return {ret.data(), ret.size()};

    ret.reserve(sizeof(TensorLayout) * 3 * m_inp_layouts_size + m_param_size);
    for (size_t i = 0; i < m_inp_layouts_size; ++ i) {
        auto &&ly = m_inp_layouts_ptr[i];
        for (size_t j = 0; j < ly.ndim; ++ j) {
            if (j)
                ret.push_back(',');
            ret.append(std::to_string(ly.shape[j]));
        }
        if (!ly.is_contiguous()) {
            ret.push_back(';');
            for (size_t j = 0; j < ly.ndim; ++ j) {
                if (j)
                    ret.push_back(',');
                ret.append(std::to_string(ly.stride[j]));
            }
        }
        ret.push_back(';');
        ret.append(ly.dtype.name());
        ret.push_back('|');
        mgb_assert(ly.format.is_default(),
                   "currently only default format is supported");
    }
    if (m_param_size) {
        ret.append(reinterpret_cast<const char*>(m_param), m_param_size);
    }
    return {ret.data(), ret.size()};
}

#undef ENGRY_FMT

#ifdef WIN32
#undef snprintf
#endif

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}