cell_kernel.cpp 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
/**
 * \file dnn/src/arm_common/lstm_cell/cell_kernel.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "./cell_kernel.h"
#include "src/arm_common/lstm_cell/opr_impl.h"
#include "src/common/lstm_cell.h"
#include "src/common/opr_delegate.h"
#include "src/naive/handle.h"

#include "src/arm_common/elemwise_helper/kimpl/sigmoid.h"
#include "src/arm_common/elemwise_helper/kimpl/tanh.h"

using namespace megdnn;
using namespace arm_common;

namespace {
template <class Op, bool bias>
struct ElemwiseCompute {
    static Op op;

    static inline float32x4x2_t compute_8(
            float* dst, float* tmp, float* ih, float* hh) {
        float32x4_t dst0 = vld1q_f32(dst);
        float32x4_t dst1 = vld1q_f32(dst + 4);
        float32x4_t tmp0 = vld1q_f32(tmp);
        float32x4_t tmp1 = vld1q_f32(tmp + 4);

        auto mid0 = vaddq_f32(dst0, tmp0);
        auto mid1 = vaddq_f32(dst1, tmp1);
        float32x4_t out0, out1;
        if (bias) {
            float32x4_t ih0 = vld1q_f32(ih);
            float32x4_t ih1 = vld1q_f32(ih + 4);
            float32x4_t hh0 = vld1q_f32(hh);
            float32x4_t hh1 = vld1q_f32(hh + 4);
            auto midd0 = vaddq_f32(ih0, hh0);
            auto midd1 = vaddq_f32(ih1, hh1);

            out0 = vaddq_f32(mid0, midd0);
            out1 = vaddq_f32(mid1, midd1);
        } else {
            out0 = mid0;
            out1 = mid1;
        }
        return {{op(out0), op(out1)}};
    }

    static inline float32x4_t compute_4(float* dst, float* tmp, float* ih, float* hh) {
        float32x4_t dst0 = vld1q_f32(dst);
        float32x4_t tmp0 = vld1q_f32(tmp);

        auto mid0 = vaddq_f32(dst0, tmp0);
        float32x4_t out0;
        if (bias) {
            float32x4_t ih0 = vld1q_f32(ih);
            float32x4_t hh0 = vld1q_f32(hh);
            auto midd0 = vaddq_f32(ih0, hh0);

            out0 = vaddq_f32(mid0, midd0);
        } else {
            out0 = mid0;
        }
        return op(out0);
    }

    static inline float compute_1(float* dst, float* tmp, float* ih, float* hh) {
        float out;
        if (bias) {
            out = dst[0] + tmp[0] + ih[0] + hh[0];
        } else {
            out = dst[0] + tmp[0];
        }
        return op(out);
    }
};

template <class Op, bool bias>
Op ElemwiseCompute<Op, bias>::op = Op();

template <bool bias>
void rnn_cell_elemwise_compute(
        _megdnn_tensor_out dst, _megdnn_tensor_in tmp, _megdnn_tensor_in bias_ih,
        _megdnn_tensor_in bias_hh, _megdnn_tensor_in cx, _megdnn_tensor_out h_new,
        _megdnn_tensor_out c_new) {
    size_t batch = dst.layout[0];
    size_t batch_length = dst.layout.total_nr_elems() / batch;
    size_t base_length = batch_length / 4;
    float *ih_ptr_ = nullptr, *hh_ptr_ = nullptr;
    float* dst_ptr_ = dst.ptr<float>();
    float* tmp_ptr_ = tmp.ptr<float>();
    if (bias) {
        ih_ptr_ = bias_ih.ptr<float>();
        hh_ptr_ = bias_hh.ptr<float>();
    }
    float* cx_ptr_ = cx.ptr<float>();
    float* h_new_ptr_ = h_new.ptr<float>();
    float* c_new_ptr_ = c_new.ptr<float>();

    ElemwiseCompute<SigmoidOp<dt_float32>, bias> sigmoid_compute;
    ElemwiseCompute<TanhOp<dt_float32>, bias> tanh_compute;
    TanhOp<dt_float32> tanh_op;

    for (size_t b = 0; b < batch; b++) {
        float* dst_ptr = dst_ptr_ + b * batch_length;
        float* tmp_ptr = tmp_ptr_ + b * batch_length;
        float* ih_ptr = ih_ptr_;
        float* hh_ptr = hh_ptr_;
        float* cx_ptr = cx_ptr_ + b * base_length;
        float* h_new_ptr = h_new_ptr_ + b * base_length;
        float* c_new_ptr = c_new_ptr_ + b * base_length;
        size_t index = 0;
        for (; index + 7 < base_length; index += 8) {
            auto out_i = sigmoid_compute.compute_8(dst_ptr, tmp_ptr, ih_ptr, hh_ptr);
            auto out_f = sigmoid_compute.compute_8(
                    dst_ptr + base_length, tmp_ptr + base_length, ih_ptr + base_length,
                    hh_ptr + base_length);
            auto out_g = tanh_compute.compute_8(
                    dst_ptr + 2 * base_length, tmp_ptr + 2 * base_length,
                    ih_ptr + 2 * base_length, hh_ptr + 2 * base_length);
            auto out_o = sigmoid_compute.compute_8(
                    dst_ptr + 3 * base_length, tmp_ptr + 3 * base_length,
                    ih_ptr + 3 * base_length, hh_ptr + 3 * base_length);
            float32x4_t cx_0 = vld1q_f32(cx_ptr);
            float32x4_t cx_1 = vld1q_f32(cx_ptr + 4);

            //! f * cx + i * g
            auto c_new_0 = vaddq_f32(
                    vmulq_f32(out_f.val[0], cx_0),
                    vmulq_f32(out_i.val[0], out_g.val[0]));
            auto c_new_1 = vaddq_f32(
                    vmulq_f32(out_f.val[1], cx_1),
                    vmulq_f32(out_i.val[1], out_g.val[1]));
            vst1q_f32(c_new_ptr, c_new_0);
            vst1q_f32(c_new_ptr + 4, c_new_1);

            auto h_new_0 = vmulq_f32(tanh_op(c_new_0), out_o.val[0]);
            auto h_new_1 = vmulq_f32(tanh_op(c_new_1), out_o.val[1]);

            vst1q_f32(h_new_ptr, h_new_0);
            vst1q_f32(h_new_ptr + 4, h_new_1);

            dst_ptr += 8;
            tmp_ptr += 8;
            ih_ptr += 8;
            hh_ptr += 8;
            cx_ptr += 8;
            c_new_ptr += 8;
            h_new_ptr += 8;
        }
        for (; index + 3 < base_length; index += 4) {
            auto out_i = sigmoid_compute.compute_4(dst_ptr, tmp_ptr, ih_ptr, hh_ptr);
            auto out_f = sigmoid_compute.compute_4(
                    dst_ptr + base_length, tmp_ptr + base_length, ih_ptr + base_length,
                    hh_ptr + base_length);
            auto out_g = tanh_compute.compute_4(
                    dst_ptr + 2 * base_length, tmp_ptr + 2 * base_length,
                    ih_ptr + 2 * base_length, hh_ptr + 2 * base_length);
            auto out_o = sigmoid_compute.compute_4(
                    dst_ptr + 3 * base_length, tmp_ptr + 3 * base_length,
                    ih_ptr + 3 * base_length, hh_ptr + 3 * base_length);
            float32x4_t cx_v = vld1q_f32(cx_ptr);

            //! f * cx + i * g
            auto c_new = vaddq_f32(vmulq_f32(out_f, cx_v), vmulq_f32(out_i, out_g));
            vst1q_f32(c_new_ptr, c_new);

            auto h_new = vmulq_f32(tanh_op(c_new), out_o);

            vst1q_f32(h_new_ptr, h_new);

            dst_ptr += 4;
            tmp_ptr += 4;
            ih_ptr += 4;
            hh_ptr += 4;
            cx_ptr += 4;
            c_new_ptr += 4;
            h_new_ptr += 4;
        }
        for (; index < base_length; index++) {
            auto out_i = sigmoid_compute.compute_1(dst_ptr, tmp_ptr, ih_ptr, hh_ptr);
            auto out_f = sigmoid_compute.compute_1(
                    dst_ptr + base_length, tmp_ptr + base_length, ih_ptr + base_length,
                    hh_ptr + base_length);
            auto out_g = tanh_compute.compute_1(
                    dst_ptr + 2 * base_length, tmp_ptr + 2 * base_length,
                    ih_ptr + 2 * base_length, hh_ptr + 2 * base_length);
            auto out_o = sigmoid_compute.compute_1(
                    dst_ptr + 3 * base_length, tmp_ptr + 3 * base_length,
                    ih_ptr + 3 * base_length, hh_ptr + 3 * base_length);
            c_new_ptr[0] = out_f * cx_ptr[0] + out_i * out_g;
            h_new_ptr[0] = tanh_op(c_new_ptr[0]) * out_o;

            dst_ptr += 1;
            tmp_ptr += 1;
            ih_ptr += 1;
            hh_ptr += 1;
            cx_ptr += 1;
            c_new_ptr += 1;
            h_new_ptr += 1;
        }
    }
}
}  // namespace

void LstmCellCompute::run(
        _megdnn_tensor_in input, _megdnn_tensor_in weight_ih, _megdnn_tensor_in bias_ih,
        _megdnn_tensor_in hx, _megdnn_tensor_in weight_hh, _megdnn_tensor_in bias_hh,
        _megdnn_tensor_in cx, _megdnn_tensor_out h_new, _megdnn_tensor_out c_new,
        _megdnn_tensor_out gates, _megdnn_workspace workspace, Handle* handle) {
    auto bundle = get_workspace_bundle(
            input.layout, weight_ih.layout, bias_ih.layout, hx.layout, weight_hh.layout,
            bias_hh.layout, cx.layout, h_new.layout, c_new.layout, gates.layout);
    bundle.set(workspace.raw_ptr);
    TensorND tmp{static_cast<void*>(bundle.get(0)), gates.layout};
    auto matmul_workspace =
            megdnn::Workspace{static_cast<dt_byte*>(bundle.get(1)), bundle.get_size(1)};
    auto opr = handle->create_operator<MatrixMul>();
    opr->param().transposeB = true;
    //! the opr will dispatch compute task to device, so record mode
    //! performance will not be effect
    opr->exec(input, weight_ih, tmp, matmul_workspace);
    opr->exec(hx, weight_hh, gates, matmul_workspace);

    //! the optimized post compute, nonlinear(tmp + dst + bias_hx + bias_cx)
    if (bias_ih.layout.ndim != 0 && bias_ih.layout.ndim != 0) {
        MEGDNN_DISPATCH_CPU_KERN(
                static_cast<naive::HandleImpl*>(handle),
                rnn_cell_elemwise_compute<true>(
                        gates, tmp, bias_ih, bias_hh, cx, h_new, c_new));
    } else {
        megdnn_assert(bias_ih.layout.ndim == 0 && bias_ih.layout.ndim == 0);
        MEGDNN_DISPATCH_CPU_KERN(
                static_cast<naive::HandleImpl*>(handle),
                rnn_cell_elemwise_compute<false>(
                        gates, tmp, bias_ih, bias_hh, cx, h_new, c_new));
    }
}

WorkspaceBundle LstmCellCompute::get_workspace_bundle(
        const TensorLayout& input, const TensorLayout& weight_ih, const TensorLayout&,
        const TensorLayout& hx, const TensorLayout& weight_hh, const TensorLayout&,
        const TensorLayout&, const TensorLayout&, const TensorLayout&,
        const TensorLayout& gates) {
    auto opr = inplace_cpu_handle()->create_operator<MatrixMul>();
    opr->param().transposeB = true;
    size_t matmul_workspace = std::max(
            opr->get_workspace_in_bytes(input, weight_ih, gates),
            opr->get_workspace_in_bytes(hx, weight_hh, gates));
    return WorkspaceBundle{nullptr, {gates.span().dist_byte(), matmul_workspace}};
}

bool LstmCellCompute::is_optimized(
        const TensorLayout& input, const TensorLayout&, const TensorLayout& bias_ih,
        const TensorLayout&, const TensorLayout&, const TensorLayout& bias_hh,
        const TensorLayout&, const TensorLayout&, const TensorLayout&,
        const TensorLayout& gates) {
    if (input.dtype.enumv() == DTypeEnum::Float32 && gates[1] == bias_ih[1] &&
        bias_ih[0] == 1 && bias_ih.eq_layout(bias_hh)) {
        return true;
    } else {
        return false;
    }
}

// vim: syntax=cpp.doxygen