opr_impl.cpp 17.5 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/naive/rng/opr_impl.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13
 */

#include "./opr_impl.h"
14 15
#include "src/common/utils.h"
#include "src/naive/handle.h"
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

#include <cmath>

using namespace megdnn;
using namespace naive;

namespace {
    template<typename ctype>
    ctype uniform_int2float(uint64_t x);

    template<>
    dt_float32 uniform_int2float(uint64_t x) {
        union { uint32_t i; dt_float32 f; } u;
        u.i = (0x7F << 23) | (x >> 41);
        return 2 - u.f;
    }

#if !MEGDNN_DISABLE_FLOAT16
    template<>
    dt_float16 uniform_int2float(uint64_t x) {
        union U { uint16_t i; dt_float16 f; U(): f(0) {} } u;
        u.i = (0xF << 10) | (x >> 54);
        return dt_float16(2.f) - u.f;
    }
#endif

42 43 44 45 46 47 48 49 50
#if !MEGDNN_DISABLE_FLOAT16
    template<>
    dt_bfloat16 uniform_int2float(uint64_t x) {
        union U { uint16_t i; dt_bfloat16 f; U(): f(0) {} } u;
        u.i = (0x7F << 7) | (x >> 57);
        return dt_bfloat16(2.f) - u.f;
    }
#endif

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    template<typename ctype>
    void fill_uniform(Xoroshiro128plus *rng, ctype *dst, size_t size) {
        for (size_t i = 0; i < size; ++ i) {
            dst[i] = uniform_int2float<ctype>((*rng)());
        }
    }

    template<typename ctype>
    void fill_gaussian(Xoroshiro128plus *rng, ctype *dst, size_t size,
            ctype mean, ctype stddev) {
        // gen gaussian by Box-Muller transform
        for (size_t i = 0; i + 2 <= size; i += 2) {
            ctype u1 = uniform_int2float<ctype>((*rng)()),
                  u2 = uniform_int2float<ctype>((*rng)()),
                  r = ctype(stddev * std::sqrt(-2 * std::log(u1))),
                  theta = ctype(2 * M_PI * u2),
                  z0 = ctype(r * std::cos(theta) + mean),
                  z1 = ctype(r * std::sin(theta) + mean);
            dst[i] = z0;
            dst[i + 1] = z1;
        }
        if (size % 2) {
            ctype u1 = uniform_int2float<ctype>((*rng)()),
                  u2 = uniform_int2float<ctype>((*rng)()),
                  r = ctype(stddev * std::sqrt(-2 * std::log(u1))),
                  theta = ctype(2 * M_PI * u2),
                  z0 = ctype(r * std::cos(theta) + mean);
            dst[size - 1] = z0;
        }
    }

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    template<typename T>
    T normal_sample(Xoroshiro128plus *rng){
        T v;
        fill_gaussian<T>(rng, &v, 1, T(0.f), T(1.f));
        return v;
    }

    template<typename T>
    T uniform_sample(Xoroshiro128plus *rng){
        return uniform_int2float<T>((*rng)());
    }

    template<typename T, typename U>
    void fill_gamma(Xoroshiro128plus *rng, U *dst, size_t size,
            U* shape, U* scale){
        for(size_t i = 0; i < size; ++i){
            T a = static_cast<T>(shape[i]);
            T b = static_cast<T>(scale[i]);
            T scale = b;
            bool a_less_one = a < 1.f ? true : false;
            if (a <= 0) {
                dst[i] = U(0.0f);
                continue;
            };
            T d = a + (a_less_one ? 2.0f / 3.0f : -1.0f / 3.0f);
            T c = 1.0f / std::sqrt(9.0f * d);
            while (true)
            {
                T  x, y;
                x = normal_sample<T>(rng);
                y = 1.0f + c * x;
                if ( y <= 0) continue;
                T v = y * y * y;
                T u = uniform_sample<T>(rng);
                T xx = x * x;
                if ((u <  1.0f - 0.0331f * xx * xx) || 
                        std::log(u) < 0.5f * xx + d * (1.0f - v + std::log(v)))
                { 
                    dst[i] = U(scale * d * v);
                    if (a_less_one) dst[i] *= U(std::pow(uniform_sample<T>(rng), T(1.f / a)));
                    break;
                }
            }
        }
    }

    template<typename T, typename U>
    void fill_poisson(Xoroshiro128plus *rng, U *dst, U* lam, size_t size){
        for(size_t i = 0; i < size; ++i) {
            T lambda = static_cast<T>(lam[i]);
            T exp_neg_lambda = std::exp(-lambda);
            T log_lambda = std::log(lambda), sqrt_lambda = std::sqrt(lambda);
            T b = 0.931f + 2.53f * sqrt_lambda;
            T a = -0.059f + 0.02483f * b;
            T inv_alpha = 1.1239f + 1.1328f / ( b - 3.4f);
            T vr = 0.9277f - 3.6224f / (b - 2.f);
            T u , v, u_shifted, k;
            if( lambda == 0) {
                dst[i] = U(0);
                continue;
            }
            if ( lambda < 10){
                T prod = 1, x = 0;
                u = 0;
                while (true)
                {
                    u = uniform_sample<T>(rng);
                    prod *= u;
                    if ( prod <= exp_neg_lambda ){
                        dst[i] = U(x);
                        break;
                    }
                    x += 1;
                }
                continue;
            }
            while (true)
            {
                u = uniform_sample<T>(rng) - T(0.5f);
                v = uniform_sample<T>(rng);
                u_shifted  = T(0.5f) - std::abs(u);
                k = std::floor((T(2.f) * a / u_shifted + b) * u + lambda + T(0.43f));
                if ( u_shifted >= 0.07 && v < vr ){
                    dst[i] = U(k);
                    break;
                }
                if (k < 0 || (u_shifted < T(0.013f) && v > u_shifted)) {
                    continue;
                }
                if ((std::log(v) + std::log(inv_alpha) - std::log(a / (u_shifted * u_shifted) + b)) <=
                    (-lambda + k * log_lambda - std::lgamma(k + 1))) {
                    dst[i] = U(k);
                    break;
                }
            }
        }
    }

    template<typename T, typename U>
    void fill_beta(Xoroshiro128plus *rng, U *dst, U* alpha,U* beta, size_t size){
        for (size_t i = 0; i < size; ++i) {
            T a = static_cast<T>(alpha[i]), b = static_cast<T>(beta[i]);
            if( a < 1.0f && b < 1.0f){
                T u,v,x,y;
                while (true)
                {
                    u = uniform_sample<T>(rng);
                    v = uniform_sample<T>(rng);
                    x = std::pow(u, 1.0f / a);
                    y = std::pow(v, 1.0f / b);
                    if (x + y < 1.0f) {
                        if (x + y > 0) {
                            dst[i] = static_cast<U>(x / (x + y));
                            break;
                        }else {
                            T logx = std::log(u) / a;
                            T logy = std::log(v) / b;
                            T log_max = std::max(logx, logy);
                            logx -= log_max;
                            logy -= log_max;
                            dst[i] = static_cast<U> (std::exp(logx - 
                                    std::log(std::exp(logx) + std::exp(logy))));
                            break;
                        }
                    }
                }
            }else{
                T ga, gb, one = 1;
                fill_gamma<T,T>(rng, &ga, 1, &a, &one);
                fill_gamma<T,T>(rng, &gb, 1, &b, &one);
                dst[i] = static_cast<U>( ga / (ga + gb));
            }
        }
    }

    template<typename T>
    void fill_permutation(Xoroshiro128plus *rng, T *dst, size_t size){
        const int64_t mask = std::numeric_limits<int64_t>::max();
        for (size_t i = 0; i < size; ++i) {
            dst[i] = static_cast<T>(i);
        }
        for (int64_t i = size - 1; i > 0; --i) {
            int64_t r = static_cast<int64_t>((*rng)()&mask) % (i + 1);
            if (i != r) {
                T tmp = dst[i];
                dst[i] = dst[r];
                dst[r] = tmp;
            }
        }
    }

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    template <typename T>
    void shuffle_fwd(const T* __restrict sptr, T* __restrict dptr,
                    const dt_int32* iptr, const size_t len,
                    const size_t step) MEGDNN_NOEXCEPT {
        for (size_t i = 0; i < len; ++i) {
            for (size_t j = 0; j < step; ++j) {
                dptr[i * step + j] = sptr[iptr[i] * step + j];
            }
        }
    }

    template <typename T>
    void shuffle_bwd(T* __restrict sptr, const T* __restrict dptr,
                    const dt_int32* iptr, const size_t len,
                    const size_t step) MEGDNN_NOEXCEPT {
        for (size_t i = 0; i < len; ++i) {
            for (size_t j = 0; j < step; ++j) {
                sptr[iptr[i] * step + j] = dptr[i * step + j];
            }
        }
    }

}  // anonymous namespace
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

uint64_t Splitmix64::operator() () {
    uint64_t z = (m_s += UINT64_C(0x9E3779B97F4A7C15));
    z = (z ^ (z >> 30)) * UINT64_C(0xBF58476D1CE4E5B9);
    z = (z ^ (z >> 27)) * UINT64_C(0x94D049BB133111EB);
    return z ^ (z >> 31);
}

void Xoroshiro128plus::seed(uint64_t seed) {
    Splitmix64 r1{seed};
    m_s[0] = r1();
    m_s[1] = r1();
    m_init_seed = seed;
}

uint64_t Xoroshiro128plus::operator() () {
    const uint64_t s0 = m_s[0];
    uint64_t s1 = m_s[1];
    const uint64_t result = s0 + s1;

    s1 ^= s0;
    m_s[0] = rotl(s0, 55) ^ s1 ^ (s1 << 14); // a, b
    m_s[1] = rotl(s1, 36); // c

    return result;
}


void UniformRNGImpl::exec(
        _megdnn_tensor_inout dst, _megdnn_workspace workspace) {
    check_exec(dst.layout, workspace.size);
    auto size = dst.layout.total_nr_elems();
    auto prng = &m_rng.ensure_seed(m_param.seed);
    switch (dst.layout.dtype.enumv()) {
#define cb(_dt)  \
        case DTypeTrait<_dt>::enumv: \
        { \
            auto ptr = dst.ptr<DTypeTrait<_dt>::ctype>(); \
            MEGDNN_DISPATCH_CPU_KERN_OPR({fill_uniform(prng, ptr, size); }); \
            return; \
        }
        MEGDNN_FOREACH_COMPUTING_DTYPE_FLOAT(cb)
#undef cb
        default:
            megdnn_throw("bad dtype");
    }
}

void GaussianRNGImpl::exec(
        _megdnn_tensor_inout dst, _megdnn_workspace workspace) {
    check_exec(dst.layout, workspace.size);
    auto size = dst.layout.total_nr_elems();
    auto prng = &m_rng.ensure_seed(m_param.seed);
    switch (dst.layout.dtype.enumv()) {
#define cb(_dt)  \
        case DTypeTrait<_dt>::enumv: \
        { \
            using ctype = DTypeTrait<_dt>::ctype; \
            ctype mean(m_param.mean), std(m_param.std); \
            auto ptr = dst.ptr<ctype>(); \
            MEGDNN_DISPATCH_CPU_KERN_OPR({fill_gaussian<ctype>( \
                        prng, ptr, size, mean, std); }); \
            return; \
        }
        MEGDNN_FOREACH_COMPUTING_DTYPE_FLOAT(cb)
#undef cb
        default:
            megdnn_throw("bad dtype");
    }
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
void GammaRNGImpl::exec(_megdnn_tensor_in shape, _megdnn_tensor_in scale,
        _megdnn_tensor_out dst, _megdnn_workspace workspace) {
    check_exec(shape.layout, scale.layout, dst.layout, workspace.size);
    auto size = dst.layout.total_nr_elems();
    auto prng = &m_rng.ensure_seed(m_param.seed);
    switch (dst.layout.dtype.enumv()) {
#define cb(_dt)                                                                    \
        case DTypeTrait<_dt>::enumv:                                               \
        {                                                                          \
            using ctype = DTypeTrait<_dt>::ctype;                                  \
            auto ptr = dst.ptr<ctype>();                                           \
            MEGDNN_DISPATCH_CPU_KERN_OPR({fill_gamma<float>(prng, ptr,             \
                        size, shape.ptr<ctype>(), scale.ptr<ctype>());};);         \
            return;                                                                \
        }
        MEGDNN_FOREACH_COMPUTING_DTYPE_FLOAT(cb)
#undef cb
        default:
            megdnn_throw("bad dtype");
    }
}

void PoissonRNGImpl::exec(_megdnn_tensor_in lam,
        _megdnn_tensor_inout dst, _megdnn_workspace workspace) {
    check_exec(lam.layout, dst.layout, workspace.size);
    auto size = dst.layout.total_nr_elems();
    auto prng = &m_rng.ensure_seed(m_param.seed);
    switch (dst.layout.dtype.enumv()) {
#define cb(_dt)                                                                    \
        case DTypeTrait<_dt>::enumv:                                               \
        {                                                                          \
            using ctype = DTypeTrait<_dt>::ctype;                                  \
            auto dst_ptr = dst.ptr<ctype>();                                       \
            auto lam_ptr = lam.ptr<ctype>();                                       \
            MEGDNN_DISPATCH_CPU_KERN_OPR({fill_poisson<float>(prng, dst_ptr,       \
                                            lam_ptr, size );};);                   \
            return;                                                                \
        }
        MEGDNN_FOREACH_COMPUTING_DTYPE_FLOAT(cb)
#undef cb
        default:
            megdnn_throw("bad dtype");
    }
}

void BetaRNGImpl::exec(_megdnn_tensor_in alpha,_megdnn_tensor_in beta,
        _megdnn_tensor_out dst, _megdnn_workspace workspace) {
    check_exec(alpha.layout, beta.layout, dst.layout, workspace.size);
    auto size = dst.layout.total_nr_elems();
    auto prng = &m_rng.ensure_seed(m_param.seed);
    switch (dst.layout.dtype.enumv()) {
#define cb(_dt)                                                                    \
        case DTypeTrait<_dt>::enumv:                                               \
        {                                                                          \
            using ctype = DTypeTrait<_dt>::ctype;                                  \
            auto dst_ptr = dst.ptr<ctype>();                                       \
            MEGDNN_DISPATCH_CPU_KERN_OPR({fill_beta<float>(prng, dst_ptr,          \
                                alpha.ptr<ctype>(),beta.ptr<ctype>(), size );};);  \
            return;                                                                \
        }
        MEGDNN_FOREACH_COMPUTING_DTYPE_FLOAT(cb)
#undef cb
        default:
            megdnn_throw("bad dtype");
    }
}

void PermutationRNGImpl::exec(
        _megdnn_tensor_inout dst, _megdnn_workspace workspace) {
    check_exec(dst.layout, workspace.size);
    auto size = dst.layout.total_nr_elems();
    auto prng = &m_rng.ensure_seed(m_param.seed);
    switch (dst.layout.dtype.enumv()) {
#define cb(_dt)                                                                    \
        case DTypeTrait<_dt>::enumv:                                               \
        {                                                                          \
            using ctype = DTypeTrait<_dt>::ctype;                                  \
            ctype max_size = DTypeTrait<_dt>::max() - 1;                           \
            megdnn_assert((ctype(size) < max_size));                               \
            auto ptr = dst.ptr<ctype>();                                           \
            MEGDNN_DISPATCH_CPU_KERN_OPR({fill_permutation<ctype>(prng, ptr,       \
                                            size);};);                             \
            return;                                                                \
        }
        cb(::megdnn::dtype::Float32)
        cb(::megdnn::dtype::Int32)
        cb(::megdnn::dtype::Int16)
#undef cb
        default:
            megdnn_throw("bad dtype");
    }
}

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
void ShuffleRNGForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
                                 _megdnn_tensor_out indices,
                                 _megdnn_workspace workspace) {
    check_exec(src.layout, dst.layout, indices.layout, workspace.size);
    const auto len = indices.layout[0];
    auto iptr = indices.ptr<dt_int32>();
    auto prng = &m_rng.ensure_seed(m_param.seed);
    fill_permutation<dt_int32>(prng, iptr, len);
    auto step = 0;
    for (size_t i = 1; i < src.layout.ndim; ++i) {
        step += src.layout[i];
    }
    if (step <= 0)
        step = 1;

#define cb(DType)                                                             \
    if (src.layout.dtype == DType()) {                                        \
        using T = typename DTypeTrait<DType>::ctype;                          \
        MEGDNN_DISPATCH_CPU_KERN_OPR(                                         \
                shuffle_fwd<T>(src.ptr<T>(), dst.ptr<T>(), iptr, len, step)); \
        return;                                                               \
    }
    MEGDNN_FOREACH_COMPUTING_DTYPE(cb)
#undef cb
}
445

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
void ShuffleRNGBackwardImpl::exec(_megdnn_tensor_in diff,
                                  _megdnn_tensor_in indices,
                                  _megdnn_tensor_out grad,
                                  _megdnn_workspace workspace) {
    check_exec(diff.layout, indices.layout, grad.layout, workspace.size);
    const auto len = indices.layout[0];
    auto iptr = indices.ptr<dt_int32>();
    auto step = 0;
    for (size_t i = 1; i < diff.layout.ndim; ++i) {
        step += diff.layout[i];
    }
    if (step <= 0)
        step = 1;
#define cb(DType)                                                \
    if (diff.layout.dtype == DType()) {                          \
        using T = typename DTypeTrait<DType>::ctype;             \
        MEGDNN_DISPATCH_CPU_KERN_OPR(shuffle_bwd<T>(             \
                grad.ptr<T>(), diff.ptr<T>(), iptr, len, step)); \
        return;                                                  \
    }
    MEGDNN_FOREACH_COMPUTING_DTYPE(cb)
#undef cb
}

// vim: syntax=cpp.doxygen