param_pack.cpp 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
/**
 * \file dnn/test/cuda/param_pack.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */
#include "test/common/checker.h"
#include "test/common/utils.h"
#include "test/cuda/fixture.h"

using namespace megdnn;
using namespace test;

namespace {

template<class T>
std::vector<int32_t> create_table(const TensorShapeArray& shapes,
                  size_t align) {
    size_t dtype_size = sizeof(T);
    if (align < dtype_size)
        align = dtype_size;

    align /= dtype_size;

    size_t offset = shapes[0].total_nr_elems();
    for (size_t i = 1; i < shapes.size(); i++) {
        auto d = offset & (align - 1);
        offset += (align - d) & (align - 1);

        offset += shapes[i].total_nr_elems();
    }

    std::vector<int32_t> table(offset * 2);

    int32_t* outer_table = table.data();
    int32_t* inner_table = outer_table + offset;

    offset = 0;
    for (size_t i = 0; i < shapes.size(); i++) {
        for (; (offset & (align - 1)) != 0; offset++) {
            outer_table[offset] = inner_table[offset] = -1;
        }

        size_t j = 0;
        for (; j < shapes[i].total_nr_elems(); j++) {
            outer_table[offset + j] = i;
            inner_table[offset + j] = j;
        }
        offset += j;
    }
    return table;
}

template<class T>
std::vector<T> create_pack(size_t pack_size, const std::vector<int32_t>& table,
        const std::vector<std::vector<T>>& ptr) {
    assert(pack_size == table.size() / 2);
    const int32_t* outer_table = table.data();
    const int32_t* inner_table = outer_table + pack_size;
    std::vector<T> data(pack_size);
    for (size_t idx = 0; idx < pack_size; ++idx) {
        int32_t out_idx = outer_table[idx];
        int32_t in_idx = inner_table[idx];
        if (in_idx != -1) {
            data[idx] = ptr[out_idx][in_idx];
        }
    }
    return data;
}

template <class T>
std::vector<std::vector<T>> create_params(size_t nr_params,
                                          const TensorShapeArray& shapes) {
    std::vector<std::vector<T>> params;
    for (size_t i = 0; i < nr_params; ++i) {
        std::vector<T> expected_data;
        for (size_t x = 0; x < shapes[i].total_nr_elems(); ++x) {
            expected_data.push_back(rand());
        }
        params.push_back(std::move(expected_data));
    }
    return params;
}

template <class T>
T* create_device_data(Handle* handle, const T* data, size_t size) {
    T* data_device =
            static_cast<T*>(test::megdnn_malloc(handle, size * sizeof(T)));
    if (data)
        test::megdnn_memcpy_H2D(handle, data_device, data, size * sizeof(T));
    return data_device;
}

template<class T>
void test_param_pack_split(Handle* handle, const TensorShapeArray& shapes,
        DType type) {
    auto split = handle->create_operator<ParamPackSplit>();

    size_t nr_params = shapes.size();
    std::vector<T*> param_ptrs;
    for (size_t i = 0; i < nr_params; ++i) {
        param_ptrs.push_back(create_device_data<T>(handle,
                    nullptr, shapes[i].total_nr_elems()));
    }
    std::vector<std::vector<T>> expected_param = create_params<T>(nr_params,
            shapes);

    std::vector<int32_t> table =
            create_table<T>(shapes, handle->alignment_requirement());
    ASSERT_EQ(table,
115 116
              ParamPackSplit::gen_offsets(
                      shapes, handle->alignment_requirement(), sizeof(T)));
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    size_t pack_size = table.size() / 2;
    int32_t* table_gpu = create_device_data<int32_t>(handle, table.data(),
            table.size());

    std::vector<T> pack =
        create_pack<T>(pack_size, table, expected_param);
    T* pack_gpu = create_device_data<T>(handle, pack.data(), pack.size());

    TensorLayout src_layout({pack_size}, type);
    TensorND src_tensor(pack_gpu, src_layout);

    TensorLayout table_layout({table.size()}, dtype::Int32());
    TensorND table_tensor(table_gpu, table_layout);

    test::WorkspaceWrapper workspace(handle, split->get_workspace_in_bytes(
                {pack_size}, table_layout, shapes));
    TensorND dst_tensor(param_ptrs.data(),
            TensorLayout({nr_params}, dtype::Int32()));

    split->exec(src_tensor, table_tensor, dst_tensor, workspace.workspace());


    // check
    for (size_t i = 0; i < nr_params; ++i) {
        T* actual_param = static_cast<T*>(malloc(shapes[i].total_nr_elems()
                    * sizeof(T)));
        test::megdnn_memcpy_D2H(handle, actual_param, param_ptrs[i],
                shapes[i].total_nr_elems() * sizeof(T));
        for (size_t idx = 0; idx < shapes[i].total_nr_elems(); ++idx) {
            ASSERT_EQ(actual_param[idx], expected_param[i][idx]);
        }
        free(actual_param);
    }
    test::megdnn_free(handle, pack_gpu);
    test::megdnn_free(handle, table_gpu);
    for (auto ptr : param_ptrs) {
        test::megdnn_free(handle, ptr);
    }
}

template <class T>
void test_param_pack_concat(Handle* handle, const TensorShapeArray& shapes,
        DType type) {
    auto concat = handle->create_operator<ParamPackConcat>();
    size_t nr_params = shapes.size();

    std::vector<T*> param_ptrs;
    std::vector<std::vector<T>> params = create_params<T>(nr_params,
            shapes);
    for (size_t i = 0; i < nr_params; ++i) {
        param_ptrs.push_back(create_device_data<T>(handle,
                    params[i].data(), shapes[i].total_nr_elems()));
    }
    std::vector<int32_t> table =
            create_table<T>(shapes, handle->alignment_requirement());
    size_t pack_size = table.size() / 2;
    int32_t* table_gpu = create_device_data<int32_t>(handle, table.data(),
            table.size());

    std::vector<T> expected_pack =
        create_pack<T>(pack_size, table, params);
    T* pack_gpu = create_device_data<T>(handle, nullptr, expected_pack.size());

    TensorLayout dst_layout({pack_size}, type);
    TensorND dst_tensor(pack_gpu, dst_layout);

    TensorLayout table_layout({table.size()}, dtype::Int32());
    TensorND table_tensor(table_gpu, table_layout);

    test::WorkspaceWrapper workspace(handle, concat->get_workspace_in_bytes(
                shapes, table_layout, {pack_size}));
    TensorND src_tensor(param_ptrs.data(),
            TensorLayout({nr_params}, dtype::Int32()));

    concat->exec(src_tensor, table_tensor, dst_tensor, workspace.workspace());

    // check
    T* actual_pack = static_cast<T*>(malloc(pack_size * sizeof(T)));
    test::megdnn_memcpy_D2H(handle, actual_pack,
            pack_gpu, sizeof(T) * pack_size);
    for (size_t i = 0; i < pack_size; ++i) {
        ASSERT_EQ(actual_pack[i], expected_pack[i]);
    }
    free(actual_pack);
    test::megdnn_free(handle, pack_gpu);
    test::megdnn_free(handle, table_gpu);
    for (auto ptr : param_ptrs) {
        test::megdnn_free(handle, ptr);
    }
}

}  // namespace

TEST_F(CUDA, PARAM_PACK) {
    SmallVector<TensorShapeArray> shapes_vec;
    shapes_vec.push_back({{1}});
    shapes_vec.push_back({{129}, {21}});
    shapes_vec.push_back({{15}, {21}, {34}});
    shapes_vec.push_back({{1, 2}, {3, 5}, {5, 8}, {7, 11}, {9, 14}});
    shapes_vec.push_back({{1, 2},
                          {3, 5},
                          {1},
                          {3, 3, 3, 4},
                          {71},
                          {9, 14},
                          {111, 111, 111},
                          {128, 128, 128}});
    for (auto shapes : shapes_vec) {
        test_param_pack_split<int32_t>(handle_cuda(), shapes, dtype::Int32());
        test_param_pack_split<int16_t>(handle_cuda(), shapes, dtype::Int16());
        test_param_pack_split<float>(handle_cuda(), shapes, dtype::Float32());
        test_param_pack_concat<int32_t>(handle_cuda(), shapes, dtype::Int32());
        test_param_pack_concat<int16_t>(handle_cuda(), shapes, dtype::Int16());
        test_param_pack_concat<float>(handle_cuda(), shapes, dtype::Float32());
    }
}

// vim: syntax=cpp.doxygen