tensorrt_runtime.cpp 7.1 KB
Newer Older
1 2 3 4
/**
 * \file src/tensorrt/test/tensorrt_runtime.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/comp_node_env.h"
#include "megbrain/plugin/profiler.h"
#include "megbrain/test/autocheck.h"
#include "megbrain/test/helper.h"
#include "megbrain/test/megdnn_helper.h"
#include "megbrain/utils/debug.h"

#if MGB_ENABLE_TENSOR_RT

#include "megbrain/tensorrt/tensorrt_opr.h"
#include "megbrain/tensorrt/tensorrt_runtime_opr.h"
#include "make_trt_net.h"

#include <random>

using namespace mgb;
using namespace nvinfer1;

template <typename T>
using TensorRTUniquePtr = intl::TensorRTUniquePtr<T>;



TEST(TestOprTensorRT, RuntimeBasic) {
    REQUIRE_GPU(1);
    intl::SimpleTensorRTNetwork net;
    auto make_trt = [&net]() {
        auto p = net.create_trt_network(false);
        TensorRTUniquePtr<INetworkDefinition> trt_net{p.second, {}};
        TensorRTUniquePtr<IBuilder> builder{p.first, {}};
        builder->setMaxBatchSize(5);
#if NV_TENSOR_RT_VERSION >= 6001
        TensorRTUniquePtr<IBuilderConfig> build_config{
                builder->createBuilderConfig()};
        TensorRTUniquePtr<ICudaEngine> cuda_engine{
                builder->buildEngineWithConfig(*trt_net, *build_config)};
#else
        TensorRTUniquePtr<ICudaEngine> cuda_engine{
                builder->buildCudaEngine(*trt_net)};
#endif
        TensorRTUniquePtr<IHostMemory> mem{cuda_engine->serialize(), {}};
        return TensorRTRuntimeOpr::make(mem->data(), mem->size(), {net.x})[0];
    };
    auto y2 = make_trt();

    HostTensorND host_z1;
    HostTensorND host_z2;
    auto func = net.graph->compile({make_callback_copy(net.y, host_z1),
                                    make_callback_copy(y2, host_z2)});
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 1e-4);
}



TEST(TestOprTensorRT, ConcatRuntimeBasic) {
    REQUIRE_GPU(1);
    intl::ConcatConvTensorRTNetwork net;

    SymbolVar y2;
    {
        auto p = net.create_trt_network(false);
        TensorRTUniquePtr<INetworkDefinition> trt_net{p.second, {}};
        TensorRTUniquePtr<IBuilder> builder{p.first, {}};
        builder->setMaxBatchSize(5);
#if NV_TENSOR_RT_VERSION >= 6001
        TensorRTUniquePtr<IBuilderConfig> build_config{
                builder->createBuilderConfig()};
        auto cuda_engine =
                builder->buildEngineWithConfig(*trt_net, *build_config);
#else
        auto cuda_engine = builder->buildCudaEngine(*trt_net);
#endif
        TensorRTUniquePtr<IHostMemory> mem{cuda_engine->serialize(), {}};

        FILE* fout = fopen(output_file("trt_cuda_engine").c_str(), "wb");
        auto wr = fwrite(mem->data(), 1, mem->size(), fout);
        mgb_assert(wr == mem->size());
        fclose(fout);

        y2 = TensorRTRuntimeOpr::make(
                TensorRTRuntimeOpr::to_shared_ptr_engine(cuda_engine), {},
                {net.x0, net.x1})[0];
    }

    HostTensorND host_z1;
    HostTensorND host_z2;
    auto func = net.graph->compile({make_callback_copy(net.y, host_z1),
                                    make_callback_copy(y2, host_z2)});
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 1e-4);
}

TEST(TestOprTensorRT, RuntimeProfile) {
    REQUIRE_GPU(1);
    intl::ConcatConvTensorRTNetwork net;
    SymbolVar y2;
    {
        auto p = net.create_trt_network(false);
        TensorRTUniquePtr<INetworkDefinition> trt_net{p.second, {}};
        TensorRTUniquePtr<IBuilder> builder{p.first, {}};
        builder->setMaxBatchSize(5);
#if NV_TENSOR_RT_VERSION >= 6001
        TensorRTUniquePtr<IBuilderConfig> build_config{
                builder->createBuilderConfig()};
        auto cuda_engine =
                builder->buildEngineWithConfig(*trt_net, *build_config);
#else
        auto cuda_engine = builder->buildCudaEngine(*trt_net);
#endif
        TensorRTUniquePtr<IHostMemory> mem{cuda_engine->serialize(), {}};

        FILE* fout = fopen(output_file("trt_cuda_engine").c_str(), "wb");
        auto wr = fwrite(mem->data(), 1, mem->size(), fout);
        mgb_assert(wr == mem->size());
        fclose(fout);

        y2 = TensorRTRuntimeOpr::make(
                TensorRTRuntimeOpr::to_shared_ptr_engine(cuda_engine), {},
                {net.x0, net.x1})[0];
    }

    HostTensorND host_z1;
    HostTensorND host_z2;
    auto func = net.graph->compile({make_callback_copy(net.y, host_z1),
                                    make_callback_copy(y2, host_z2)});

    {
        mgb::GraphProfiler profiler(net.graph.get());

        func->execute();

        profiler.to_json()->writeto_fpath(output_file(
                "TestOprTensorRT.RuntimeProfile.FromProfiler.json"));

        auto prof_obj = *static_cast<json::Object*>(profiler.to_json().get());
        auto record_obj =
                *static_cast<json::Object*>(prof_obj["opr_internal_pf"].get());
        auto opr_prof_arr = *static_cast<json::Array*>(
                record_obj[y2.node()->owner_opr()->id_str()].get());
        for (auto item_arr : opr_prof_arr.get_impl()) {
            auto layer_info_arr = *static_cast<json::Array*>(item_arr.get());
            auto layer_time =
                    *static_cast<json::Number*>(layer_info_arr[1].get());

            mgb_assert(layer_time.get_impl() > 0, "Error occured in json.");
        }

        MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 1e-4);
    }
    // Run it again after profiler is not in existance.
    func->execute();

    MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 1e-4);
}

TEST(TestOprTensorRT, RuntimeChangeBatchSize) {
    REQUIRE_GPU(1);
    intl::SimpleTensorRTNetwork net;
    auto make_trt = [&net]() {
        auto p = net.create_trt_network(false);
        TensorRTUniquePtr<INetworkDefinition> trt_net{p.second, {}};
        TensorRTUniquePtr<IBuilder> builder{p.first, {}};
        builder->setMaxBatchSize(10);
#if NV_TENSOR_RT_VERSION >= 6001
        TensorRTUniquePtr<IBuilderConfig> build_config{
                builder->createBuilderConfig()};
        TensorRTUniquePtr<ICudaEngine> cuda_engine{
                builder->buildEngineWithConfig(*trt_net, *build_config)};
#else
        TensorRTUniquePtr<ICudaEngine> cuda_engine{
                builder->buildCudaEngine(*trt_net)};
#endif
        TensorRTUniquePtr<IHostMemory> mem{cuda_engine->serialize(), {}};
        return TensorRTRuntimeOpr::make(mem->data(), mem->size(), {net.x})[0];
    };
    auto y2 = make_trt();

    HostTensorND host_z1;
    HostTensorND host_z2;
    auto func = net.graph->compile({make_callback_copy(net.y, host_z1),
                                    make_callback_copy(y2, host_z2)});
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 1e-4);
    *net.host_x = *net.gen({1, 23, 28, 28});
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 1e-4);
    *net.host_x = *net.gen({10, 23, 28, 28});
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 1e-4);
}

#endif  // MGB_ENABLE_TENSOR_RT

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}