test_fake_quant.py 4.7 KB
Newer Older
1 2 3
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
4
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
5 6 7 8 9 10 11 12 13
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import pytest

import megengine as mge
from megengine import tensor
M
Megvii Engine Team 已提交
14
from megengine.core.autodiff.grad import Function, Grad
15
from megengine.core.tensor.utils import make_shape_tuple
16
from megengine.quantization.internal_fake_quant import *
M
Megvii Engine Team 已提交
17
from megengine.quantization.utils import QuantMode, fake_quant_tensor, tqt_forward
18 19


M
Megvii Engine Team 已提交
20
class TQT_numpy:
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    def __init__(self, lowerbound, upperbound):
        super().__init__()
        self.lowerbound = lowerbound
        self.upperbound = upperbound

    def forward(self, inp, scale):
        t = 2 ** scale
        # t = F.maximum(t, 1e-4)
        inp_scaled = inp / t
        inp_clipped = np.maximum(
            np.minimum(inp_scaled, self.upperbound), self.lowerbound
        )
        inp_rounded = np.round(inp_clipped)
        inp_flq = inp_rounded * t
        self.saved_tensors = (inp_scaled, inp_rounded, t)
        return inp_flq

    def backward(self, grad_inp_flq):
        (inp_scaled, inp_rounded, t) = self.saved_tensors
        mask_clip = (inp_scaled < -0.5 + self.lowerbound) + (
            inp_scaled > self.upperbound + 0.5
        )  # mask for accumulating the gradients of |data_scaled|>L
        mask_quant = np.abs(
            mask_clip - 1
        )  # mask for accumulating the gradients with |data_scaled|<=L
        grad_quant = (
            grad_inp_flq * mask_quant * (inp_rounded - inp_scaled)
        )  # gradient within |data_scaled|<=L
        grad_clip = (
            grad_inp_flq * mask_clip * inp_rounded
        )  # gradient with   | data_scaled|>L
        grad_s = grad_clip.sum() + grad_quant.sum()
        # dL/ds = dL/dt * t * ln(2)
        grad_s = grad_s * t * np.log(2)
        grad_inp = grad_inp_flq * mask_quant
        return grad_inp, grad_s


M
Megvii Engine Team 已提交
59
def test_tqt():
60

M
Megvii Engine Team 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    g = []

    def cb(grad):
        g.append(grad)

    x = np.random.normal(size=(1, 2, 3, 4))
    s = np.random.rand(1) + 1
    g_y = np.ones(shape=(1, 2, 3, 4), dtype="float32")

    n = TQT_numpy(-127, 127)
    y_np = n.forward(x, s)
    g_x_np, g_s_np = n.backward(g_y)

    x = mge.tensor(x, dtype="float32")
    s = mge.tensor(s, dtype="float32")
    g_y = mge.tensor(g_y, dtype="float32")
    grad = Grad().wrt(x, s, callback=cb)
    y = tqt_forward(-127, 127, x, s)
    grad(y, g_y)
    g_x, g_s = g

    np.testing.assert_allclose(y.numpy(), y_np, atol=1e-6)
    np.testing.assert_allclose(g_x.numpy(), g_x_np, atol=1e-6)
    np.testing.assert_allclose(g_s.numpy(), g_s_np, atol=1e-6)
85 86


87 88 89


def _save_to(self, name="grad"):
90
    def callback(grad):
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        setattr(self, name, grad)

    return callback


class Round(Function):
    def forward(self, x):
        return F.round(x)

    def backward(self, output_grads):
        return output_grads


def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax):
    oup = Round()(inp / scale) + zero_point
    oup = F.minimum(F.maximum(oup, qmin), qmax)
    oup = (oup - zero_point) * scale
    return oup


def test_fakequant():
    qmin = -126
    qmax = 129

    def run(zero_point, scale):
        q_dict = {}
        q_dict["mode"] = QuantMode.ASYMMERTIC
        q_dict["scale"] = scale
        q_dict["zero_point"] = zero_point
        inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32))
        inp = tensor(inp_data, dtype=np.float32)
        # test forward
        oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy()
        oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy()
        assert np.allclose(oup, oup_gt)
        assert oup.shape == oup_gt.shape

        # test backward
        x = tensor(inp_data, dtype=np.float32)
        grad = Grad().wrt(x, callback=_save_to(x))
        y = fake_quant_tensor(x, qmin, qmax, q_dict)
        grad(y, tensor(F.ones_like(x)))

        x1 = tensor(inp_data, dtype=np.float32)
        grad = Grad().wrt(x1, callback=_save_to(x1))
        y1 = fake_quant_tensor_gt(x1, scale, zero_point, qmin, qmax)
        grad(y1, tensor(F.ones_like(x1)))

        assert np.allclose(x.grad.numpy(), x1.grad.numpy())
        assert make_shape_tuple(x.grad.shape) == make_shape_tuple(x1.grad.shape)

    zero_point = tensor([1.0], dtype=np.float32)
    scale = tensor([4.0], dtype=np.float32)
    run(zero_point, scale)

    zero_point = tensor(1.0 * np.ones((1, 32, 1, 1)), dtype=np.float32)
    scale = tensor(4.0 * np.ones((1, 32, 1, 1)), dtype=np.float32)
    run(zero_point, scale)