rng.cpp 14.4 KB
Newer Older
1 2 3 4
/**
 * \file dnn/test/common/rng.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */
#include "test/common/rng.h"

#include "test/common/random_state.h"
#include "test/common/tensor.h"
#include <gtest/gtest.h>

using namespace megdnn;
using namespace test;

/*!
 * \brief xorshift+ RNG, which is very fast
 *
 * see https://en.wikipedia.org/wiki/Xorshift#xorshift.2B
 */
class RNG::RNGxorshf {
    uint64_t s[2];

    public:
        using result_type = uint64_t;

#ifdef WIN32
        static uint64_t min() {
            return 0;
        }
        static uint64_t max() {
            return std::numeric_limits<uint64_t>::max();
        }
#else
        static constexpr uint64_t min() {
            return 0;
        }
        static constexpr uint64_t max() {
            return std::numeric_limits<uint64_t>::max();
        }
#endif

        template<typename T>
        explicit RNGxorshf(T &&gen) {
            s[0] = gen();
            s[1] = gen();
        }

        uint64_t operator() () {
            uint64_t x = s[0];
            uint64_t const y = s[1];
            s[0] = y;
            x ^= x << 23; // a
            s[1] = x ^ y ^ (x >> 17) ^ (y >> 26); // b, c
            return s[1] + y;
        }
};

Float16PeriodicalRNG::Float16PeriodicalRNG() : m_offset(0) {
    for (size_t x = 0; x < (1u<<16); ++x) {
        size_t exponent = (x >> 10) & 0x1F;
        if (exponent == 0x1F) {
            // +inf, -inf, NaN
            continue;
        }
        union U {
            U(){}
            uint16_t i;
            dt_float16 f;
        } i2f;
        i2f.i = static_cast<uint16_t>(x);
        m_sequence.push_back(i2f.f);
    }
78
    COMPAT_RANDOM(m_sequence.begin(), m_sequence.end());
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
}

Float16PeriodicalRNG::Float16PeriodicalRNG(size_t range) : m_offset(0) {
    union U {
        U() {}
        uint16_t i;
        dt_float16 f;
    } i2f;
    size_t x = 0;
    i2f.i = static_cast<uint16_t>(x);
    for (size_t i = 0; i < range; i++) {
        x += 1;
        i2f.i = static_cast<uint16_t>(x);
        m_sequence.push_back(i2f.f);
    }
    x = 1u << 15;
    i2f.i = static_cast<uint16_t>(x);
    for (size_t i = 0; i < range; i++) {
        x += 1;
        i2f.i = static_cast<uint16_t>(x);
        m_sequence.push_back(i2f.f);
    }

102
    COMPAT_RANDOM(m_sequence.begin(), m_sequence.end());
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
}

void Float16PeriodicalRNG::gen(const TensorND& tensor) {
    megdnn_assert(tensor.layout.dtype == dtype::Float16());
    size_t nr_elems = tensor.layout.span().dist_elem();
    auto offset = tensor.layout.span().low_elem;
    for (size_t i = 0; i < nr_elems; ++i) {
        tensor.ptr<dt_float16>()[offset+i] = get_single_val();
    }
}

dt_float16 Float16PeriodicalRNG::get_single_val() {
    if (m_offset >= m_sequence.size()) {
        m_offset = 0;
    }
    return m_sequence[m_offset++];
}

void IIDRNG::gen(const TensorND& tensor) {
    if (tensor.layout.dtype == dtype::Float32() && has_fast_float32() &&
        tensor.layout.is_physical_contiguous()) {
        fill_fast_float32(tensor.ptr<dt_float32>(),
                          tensor.layout.total_nr_elems());
        return;
    }

    auto offset = tensor.layout.span().low_elem;
    auto nr_elems = tensor.layout.span().dist_elem();
#define cb(DType)                                                   \
    if (tensor.layout.dtype == DType()) {                           \
        using ctype = typename DTypeTrait<DType>::ctype;            \
        auto ptr = tensor.ptr<ctype>();                             \
        for (size_t i = 0; i < nr_elems; ++i) {                     \
            ptr[offset + i] = static_cast<ctype>(gen_single_val()); \
        }                                                           \
        return;                                                     \
    }
    MEGDNN_FOREACH_COMPUTING_DTYPE(cb);
#undef cb
#define cb(DType)                                                              \
    if (tensor.layout.dtype.enumv() == DTypeTrait<DType>::enumv) {             \
        using ctype = typename DTypeTrait<DType>::ctype;                       \
        auto ptr = tensor.ptr<ctype>();                                        \
        if (output_is_float()) {                                               \
            for (size_t i = 0; i < nr_elems; ++i) {                            \
                ptr[offset + i] = tensor.layout.dtype.param<DType>().quantize( \
                        static_cast<float>(gen_single_val()));                 \
            }                                                                  \
        } else {                                                               \
            for (size_t i = 0; i < nr_elems; ++i) {                            \
                ptr[offset + i] = static_cast<ctype>(gen_single_val());        \
            }                                                                  \
        }                                                                      \
        return;                                                                \
    }
    MEGDNN_FOREACH_QUANTIZED_DTYPE(cb)
    //! In order to avoid an unnecessary increase in binary size, we just
    //! use QuantizedS16 dtype in winograd_filter_preprocess now.
    cb(::megdnn::dtype::QuantizedS16)
#undef cb
    if (tensor.layout.dtype.enumv() == DTypeEnum::Quantized4Asymm) {
        auto ptr = static_cast<uint8_t*>(tensor.raw_ptr);
        if (output_is_float()) {
            for (size_t i = 0; i < nr_elems; i += 2) {
                uint8_t val0 =
                        tensor.layout.dtype.param<dt_quint4>()
                                .quantize(static_cast<float>(gen_single_val()))
                                .as_uint8();
                uint8_t val1 =
                        tensor.layout.dtype.param<dt_quint4>()
                                .quantize(static_cast<float>(gen_single_val()))
                                .as_uint8();
                ptr[(offset + i) / 2] = (val1 << 4) | val0;
            }
        } else {
            for (size_t i = 0; i < nr_elems; i += 2) {
                uint8_t val0 = static_cast<uint8_t>(gen_single_val());
                uint8_t val1 = static_cast<uint8_t>(gen_single_val());
                ptr[(offset + i) / 2] = (val1 << 4) | val0;
            }
        }
        return;
    }
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    if (tensor.layout.dtype.enumv() == DTypeEnum::QuantizedS4) {
        auto ptr = static_cast<int8_t*>(tensor.raw_ptr);
        if (output_is_float()) {
            for (size_t i = 0; i < nr_elems; i += 2) {
                int8_t val0 =
                        tensor.layout.dtype.param<dt_qint4>()
                                .quantize(static_cast<float>(gen_single_val()))
                                .as_int8();
                int8_t val1 =
                        tensor.layout.dtype.param<dt_qint4>()
                                .quantize(static_cast<float>(gen_single_val()))
                                .as_int8();
                ptr[(offset + i) / 2] = (val0 & 0xF) | (val1 << 4);
            }
        } else {
            for (size_t i = 0; i < nr_elems; i += 2) {
                int8_t val0 = static_cast<int8_t>(gen_single_val());
                int8_t val1 = static_cast<int8_t>(gen_single_val());

                val0 = std::min(val0,DTypeTrait<dtype::QuantizedS4>::max());
                val0 = std::max(val0,DTypeTrait<dtype::QuantizedS4>::min());
                val1 = std::min(val1,DTypeTrait<dtype::QuantizedS4>::max());
                val1 = std::max(val1,DTypeTrait<dtype::QuantizedS4>::min());
                ptr[(offset + i) / 2] = (val0 & 0xF) | (val1 << 4);
            }
        }
        return;
    }
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
    megdnn_assert(0, "IIDRNG does not know how to generate value for DType %s",
                  tensor.layout.dtype.name());
}

bool IIDRNG::has_fast_float32() {
    return false;
}

void IIDRNG::fill_fast_float32(dt_float32 *, size_t ) {
    megdnn_assert(0);
}

dt_float32 NormalRNG::gen_single_val()
{
    auto &&gen = RandomState::generator();
    return m_dist(gen);
}

bool NormalRNG::has_fast_float32() {
    return true;
}

void NormalRNG::fill_fast_float32(dt_float32 *dest, size_t size) {
    RNGxorshf gen{RandomState::generator()};
    for (size_t i = 0; i < size; ++ i) {
        dest[i] = m_dist(gen);
    }
}

void ConstValue::fill_fast_float32(dt_float32 *dest, size_t size) {
    for (size_t i = 0; i < size; ++ i)
        dest[i] = value_;
}

dt_float32 UniformIntRNG::gen_single_val()
{
    auto &&gen = RandomState::generator();
    return static_cast<dt_float32>(m_dist(gen));
}

dt_float32 UniformIntNonZeroRNG::gen_single_val() {
    auto&& gen = RandomState::generator();
    auto ret = UniformIntRNG::gen_single_val();
    if (m_dist_flip(gen)) {
        ret = -ret;
    }
    megdnn_assert(ret != 0);
    return ret;
}

dt_float32 UniformFloatRNG::gen_single_val()
{
    auto &&gen = RandomState::generator();
    return m_dist(gen);
}

bool UniformFloatRNG::has_fast_float32() {
    return true;
}

void UniformFloatRNG::fill_fast_float32(dt_float32 *dest, size_t size) {
    RNGxorshf gen{RandomState::generator()};
    auto k = double(m_dist.b() - m_dist.a()) /
        double(RNGxorshf::max() - RNGxorshf::min() + 1.0);
    auto b = m_dist.a() - RNGxorshf::min() * k;
    for (size_t i = 0; i < size; ++ i) {
        dest[i] = gen() * k + b;
    }
}

dt_float32 UniformFloatNonZeroRNG::gen_single_val() {
    auto&& gen = RandomState::generator();
    auto ret = UniformFloatRNG::gen_single_val();
    if (m_dist_flip(gen)) {
        ret = -ret;
    }
    megdnn_assert(ret != 0);
    return ret;
}

void UniformFloatNonZeroRNG::fill_fast_float32(dt_float32* dest, size_t size) {
    RNGxorshf gen{RandomState::generator()};
    UniformFloatRNG::fill_fast_float32(dest, size);
    for (size_t i = 0; i < size; ++i) {
        if (m_dist_flip(gen)) {
            dest[i] = -dest[i];
        }
    }
}

void UniformFloatWithZeroRNG::fill_fast_float32(dt_float32 *dest, size_t size) {
    RNGxorshf gen{RandomState::generator()};
    printf("a %f, b %f \n", m_dist.a(), m_dist.b());
    auto k = double(m_dist.b() - m_dist.a()) /
        double(RNGxorshf::max() - RNGxorshf::min() + 1.0);
    auto b = m_dist.a() - RNGxorshf::min() * k;

    auto p = 1.0 / double(RNGxorshf::max() - RNGxorshf::min() + 1.0);
    auto pb = 0.f - RNGxorshf::min() * p;
    for (size_t i = 0; i < size; ++ i) {
        float rnd = gen() * p + pb;
        //printf("%.3f \n", rnd);
        if(rnd < zero_val_proportion_) {
            dest[i] = 0.f;
        } else {
            dest[i] = gen() * k + b;
        }
    }
}

BernoulliRNG::BernoulliRNG(float probability_):
    m_dist(0, 1)
{
    megdnn_assert(0.0f <= probability_ && probability_ < 1.0f);
    m_probability = probability_;
}

dt_float32 BernoulliRNG::gen_single_val()
{
    auto &&gen = RandomState::generator();
    return m_dist(gen) < m_probability ? 1.0 : 0.0;
}

void NoReplacementRNG::gen(const TensorND &tensor) {
    auto offset = tensor.layout.span().low_elem;
    auto nr_elems = tensor.layout.span().dist_elem();
#define cb(DType) \
    if (tensor.layout.dtype == DType()) { \
        using ctype = typename DTypeTrait<DType>::ctype; \
        std::set<ctype> values; \
        auto ptr = tensor.ptr<ctype>(); \
        for (size_t i = 0; i < nr_elems; ++i) { \
            ctype val; \
            do { \
                val = static_cast<ctype>(m_iid_rng->gen_single_val()); \
            } while (!values.insert(val).second); \
            ptr[offset+i] = val; \
        } \
    }
    MEGDNN_FOREACH_COMPUTING_DTYPE(cb);
#undef cb
}

InvertibleMatrixRNG::InvertibleMatrixRNG() :
    m_rng{new RNGxorshf{RandomState::generator()}}
{
}

InvertibleMatrixRNG::~InvertibleMatrixRNG() noexcept = default;

template<typename ctype>
void InvertibleMatrixRNG::do_gen(ctype *ptr, size_t batch, size_t n)
{
    auto&& gen = *m_rng;
    std::vector<size_t> perm(n);
    for (size_t i = 0; i < n; ++ i) {
        perm[i] = i;
    }
    for (size_t i = 0; i < batch; ++ i, ptr += n * n) {
        for (size_t j = 0; j < n; ++ j) {
            for (size_t k = 0; k < n; ++ k) {
                ptr[j * n + k] = static_cast<ctype>(
                        gen() / (RNGxorshf::max() + 1.0) * 2 - 0.5);
            }
        }
        for (size_t i = 0; i < n; ++ i) {
            auto idx = gen() % (n - i) + i;
            ptr[i * n + perm[idx]] +=
                    static_cast<ctype>(gen() / (RNGxorshf::max() + 1.0) + 3);
            std::swap(perm[idx], perm[i]);
        }
    }
}

void InvertibleMatrixRNG::gen(const TensorND& tensor) {
#define cb(DType)                                                  \
    if (tensor.layout.dtype == DType()) {                          \
        using ctype = typename DTypeTrait<DType>::ctype;           \
        auto ptr = tensor.ptr<ctype>();                            \
        megdnn_assert(tensor.layout.ndim >= 2 &&                   \
                      tensor.layout.is_physical_contiguous());     \
        size_t batch = 1;                                          \
        for (size_t i = 0; i < tensor.layout.ndim - 2; ++i) {      \
            batch *= tensor.layout[i];                             \
        }                                                          \
        size_t n = tensor.layout[tensor.layout.ndim - 1];          \
        megdnn_assert(n == tensor.layout[tensor.layout.ndim - 2]); \
        do_gen<ctype>(ptr, batch, n);                              \
        return;                                                    \
    }
    MEGDNN_FOREACH_COMPUTING_DTYPE_FLOAT(cb)
#undef cb
}
void ConsecutiveRNG::fill_fast_float32(dt_float32* dest, size_t size) {
    for (size_t i = 0; i < size; ++ i)
        dest[i] = value_ + i * delta_;
}

TEST(RNG, NO_REPLACEMENT_RNG)
{
    static const size_t N = 10, TIMES = 100;
    UniformIntRNG base_rng(0, N-1);
    NoReplacementRNG rng(&base_rng);
    auto handle = create_cpu_handle(2, false);
    for (size_t t = 0; t < TIMES; ++t) {
        TensorLayout layout({N}, dtype::Float32());
        Tensor<> tensor(handle.get(), layout);
        rng.gen(tensor.tensornd());
        std::vector<float> vals;
        for (size_t i = 0; i < N; ++i) vals.push_back(tensor.ptr()[i]);
        std::sort(vals.begin(), vals.end());
        for (size_t i = 0; i < N; ++i) ASSERT_EQ(static_cast<float>(i), vals[i]);
    }
}
// vim: syntax=cpp.doxygen