tensor_format.cpp 14.6 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/common/tensor_format.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megdnn/tensor_format.h"
#include "megdnn/basic_types.h"
#include "src/common/utils.h"

#include <unordered_map>

using namespace megdnn;
using namespace megdnn::detail;

namespace {
DefaultTensorFormat* default_tensor_format_obj;
}

/* ===================== TensorFormat ===================== */

TensorFormat TensorFormat::deserialize(const std::string& bin,
                                       const Handle* handle) {
    using Type = TensorFormat::Type;
    auto type = reinterpret_cast<const Type*>(bin.data());
    switch (*type) {
        case Type::DEFAULT:
            return DefaultTensorFormat::deserialize(handle, type + 1,
                                                    bin.size() - sizeof(Type));
        case Type::IMAGE2D_PACK4:
            return Image2DPack4TensorFormat::deserialize(
                    handle, type + 1, bin.size() - sizeof(Type));
        default:
            megdnn_throw("invalid tensor format type in deserialize");
    }
}

TensorFormat::Format() : m_impl{DefaultTensorFormat::make().m_impl} {}

std::string TensorFormat::to_string() const {
    return m_impl->to_string();
}

std::string TensorFormat::serialize() const {
    std::string ret;
    ret.reserve(32);
    ret.assign(sizeof(Type), '\0');
    *reinterpret_cast<Type*>(&ret[0]) = type();
    m_impl->serialize_append(ret);
    return ret;
}

void TensorFormat::on_bad_cvt(Type dst_type) const {
    MEGDNN_MARK_USED_VAR(dst_type);
    megdnn_throw(ssprintf("can not convert tensor format %s to %d",
                          impl()->to_string().c_str(),
                          static_cast<int>(dst_type)));
}

bool TensorFormat::is_default() const {
    return m_impl == default_tensor_format_obj;
}

/* ===================== DefaultFormat ===================== */
size_t DefaultTensorFormat::init_contiguous_stride(TensorLayout& layout) const {
    if (!layout.ndim)
        return 0;
    megdnn_assert(layout.ndim <= TensorLayout::MAX_NDIM);
    size_t accum = 1;
    SafeMultiplies<size_t> mul;
    for (size_t i = layout.ndim; i; --i) {
        layout.stride[i - 1] = accum;
        accum = mul(accum, layout.shape[i - 1]);
    }
    return accum;
}

bool DefaultTensorFormat::is_contiguous_spec(const TensorLayout& layout) const {
    return layout.is_physical_contiguous();
}

TensorLayout DefaultTensorFormat::collapse_contiguous_spec(
        const TensorLayout& layout) const {
    megdnn_assert(layout.ndim);
    TensorLayout res{layout};

    // remove all dims with shape 1
    for (int i = static_cast<int>(res.ndim) - 1; i >= 0 && res.ndim >= 2; --i) {
        if (!res.shape[i]) {
            // empty tensor
            res.ndim = 1;
            res.shape[0] = 0;
            res.stride[0] = 1;
            return res;
        }
        if (res.shape[i] == 1)
            res.remove_axis_inplace(i);
    }

    if (res.ndim == 1) {
        if (res.shape[0] <= 1) {
            // make it the "most canonical" contiguous layout for scalars or
            // empty tensors
            res.stride[0] = 1;
        }
        return res;
    }

    megdnn_assert(res.ndim && res.shape[res.ndim - 1]);
    for (int i = static_cast<int>(res.ndim) - 2; i >= 0; --i) {
        megdnn_assert(res.shape[i]);
        if (res.stride[i] ==
            res.stride[i + 1] * static_cast<ptrdiff_t>(res.shape[i + 1])) {
            res.shape[i] *= res.shape[i + 1];
            res.stride[i] = res.stride[i + 1];
            res.remove_axis_inplace(i + 1);
        }
    }
    return res;
}

TensorLayout::Span DefaultTensorFormat::span_spec(
        const TensorLayout& layout) const {
    if (layout.ndim == 0)
        return {0, 0, 0, 0};

    ptrdiff_t low_elem = 0;
    size_t high_elem = 0;
    for (size_t i = 0; i < layout.ndim; ++i) {
        auto shape_val = layout.shape[i];
        if (!shape_val) {
            return {0, 0, 0, 0};
        }
        auto stride_val = layout.stride[i];
        if (stride_val > 0) {
            high_elem += (shape_val - 1) * stride_val;
        } else {
            low_elem += (shape_val - 1) * stride_val;
        }
    }
    ++high_elem;
    ptrdiff_t low_byte;
    if (low_elem < 0) {
        megdnn_assert(!layout.dtype.is_low_bit(),
                      "tensors with low-bit dytes shouldn't have negative "
                      "strides");
        low_byte = low_elem * layout.dtype.size();
    } else {
        low_byte = 0;
    }
    size_t high_byte = layout.dtype.size(high_elem);
    return TensorLayout::Span(low_elem, low_byte, high_elem, high_byte);
}

std::string DefaultTensorFormat::to_string() const {
    return "default{}";
}

void DefaultTensorFormat::serialize_append(std::string&) const {}

TensorFormat DefaultTensorFormat::deserialize(const Handle* handle,
                                              const void* buf, size_t size) {
    MEGDNN_MARK_USED_VAR(handle);
    MEGDNN_MARK_USED_VAR(buf);
    megdnn_assert(!size);
    return make();
}

TensorFormat DefaultTensorFormat::make() {
    // use static storage so the object is accessible in global destructing
    // phase
    static std::aligned_storage_t<sizeof(DefaultTensorFormat),
                                  alignof(DefaultTensorFormat)>
            storage;
    static DefaultTensorFormat* obj = default_tensor_format_obj =
            new (&storage) DefaultTensorFormat{};
    return impl_to_tensor_format(obj);
}

/* ===================== Image2DTensorFormatBase ===================== */

Image2DTensorFormatBase::Image2DTensorFormatBase(Type type, size_t align_axis,
                                                 size_t align_size_in_byte)
        : ImplBase(type) {
    megdnn_assert(align_size_in_byte && align_axis);
    m_align_axis = align_axis;
    m_align_size_in_byte_log2 = __builtin_ctz(align_size_in_byte);
    megdnn_assert((1u << m_align_size_in_byte_log2) == align_size_in_byte,
                  "align size not power of 2: %zu", align_size_in_byte);
}

size_t Image2DTensorFormatBase::init_contiguous_stride(
        TensorLayout& layout) const {
    if (!layout.ndim)
        return 0;
    megdnn_assert(layout.dtype.valid() && layout.ndim > m_align_axis,
                  "dtype=%s ndim=%zu align=%zu", layout.dtype.name(),
                  layout.ndim, m_align_axis);
    size_t align_size = align_size_in_byte(layout.dtype.size_log());
    size_t accum = 1;
    SafeMultiplies<size_t> mul;
    for (size_t i = layout.ndim; i; --i) {
        if (i == m_align_axis) {
            accum = get_aligned_power2<size_t>(accum, align_size);
        }

        layout.stride[i - 1] = accum;
        accum = mul(accum, layout.shape[i - 1]);
    }
    assert_valid(layout);
    return accum;
};

bool Image2DTensorFormatBase::is_contiguous_spec(
        const TensorLayout& layout) const {
    megdnn_assert(layout.dtype.valid());
    size_t align_size = align_size_in_byte(layout.dtype.size_log());
    ptrdiff_t expected = 1;
    int height_axis = static_cast<int>(m_align_axis - 1);
    for (int i = layout.ndim - 1; i >= 0; --i) {
        if (i == height_axis) {
            expected = megdnn::get_aligned_power2<size_t>(expected, align_size);
        }
        if (layout.shape[i] != 1 && layout.stride[i] != expected) {
            if (i == height_axis) {
                // allow row pitch to be larger than minimal required
                auto s = layout.stride[i];
                if (!s) {
                    // broadcast is not contiguous
                    return false;
                }

                size_t mask = align_size_in_byte(layout.dtype.size_log()) - 1;
                megdnn_assert(s > expected && !(s & mask),
                              "invalid row pitch: %d; layout: %s",
                              static_cast<int>(s), layout.to_string().c_str());
                expected = s;
            } else {
                return false;
            }
        }
        expected *= layout.shape[i];
    }
    // empty tensors are not contiguous
    return expected != 0;
}

TensorLayout Image2DTensorFormatBase::collapse_contiguous_spec(
        const TensorLayout& layout) const {
    assert_valid(layout);
    TensorLayout res{layout};
    int new_axis = m_align_axis;
    // remove all dims with shape 1
    for (int i = static_cast<int>(res.ndim) - 1; i >= 0 && res.ndim >= 3; --i) {
        if (i == new_axis && static_cast<int>(res.ndim) == new_axis + 1) {
            // i is the only width dim
            continue;
        }
        if (i == new_axis - 1 && !i) {
            // new_xis == 1 && i == 0, i is the only height dim
            continue;
        }
        if (res.shape[i] == 1) {
            res.remove_axis_inplace(i);
            if (i < new_axis)
                new_axis -= 1;
        }
    }
    megdnn_assert(res.ndim >= 2);

    auto contig_with_next = [&](size_t i) {
        return res.stride[i] ==
               res.stride[i + 1] * static_cast<ptrdiff_t>(res.shape[i + 1]);
    };

    for (int i = static_cast<int>(res.ndim) - 2; i >= new_axis; --i) {
        megdnn_assert(res.shape[i]);
        if (contig_with_next(i)) {
            // remove next axis
            res.shape[i] *= res.shape[i + 1];
            res.stride[i] = res.stride[i + 1];
            res.remove_axis_inplace(i + 1);
        }
    }

    for (int i = new_axis - 2; i >= 0; --i) {
        megdnn_assert(res.shape[i]);
        if (contig_with_next(i)) {
            res.shape[i] *= res.shape[i + 1];
            res.stride[i] = res.stride[i + 1];
            res.remove_axis_inplace(i + 1);
            if (i <= new_axis - 2)
                new_axis -= 1;
        }
    }
    res.format = change_axis(new_axis);
    return res;
}

TensorLayout::Span Image2DTensorFormatBase::span_spec(
        const TensorLayout& layout) const {
    assert_valid(layout);
    size_t size = image_height(layout) * image_row_pitch(layout);
    auto mask = (1 << layout.dtype.size_log()) - 1;
    megdnn_assert(!(size & mask), "unaligned size: %zu", size);
    return {0, 0, size >> layout.dtype.size_log(), size};
}

void Image2DTensorFormatBase::serialize_append(std::string& result) const {
    SerializePack pack;
    pack.align_axis = m_align_axis;
    megdnn_assert(pack.align_axis == m_align_axis);  // detect overflow
    result.append(reinterpret_cast<char*>(&pack), sizeof(pack));
}

size_t Image2DTensorFormatBase::image_height(const TensorLayout& layout) const {
    size_t accum = 1;
    for (int i = m_align_axis - 1; i >= 0; --i) {
        if (layout.stride[i] == 0) {
            // this dimension is broadcasted
        } else {
            accum *= layout.shape[i];
        }
    }
    return accum;
}

size_t Image2DTensorFormatBase::image_row_pitch(
        const TensorLayout& layout) const {
    for (int i = m_align_axis - 1; i >= 0; --i) {
        // find a non-broadcast axis
        if (auto s = layout.stride[i]) {
            return layout.dtype.size(s);
        }
    }
    // use width for all broadcasted case
    return get_aligned_power2<size_t>(
            layout.dtype.size(image_width_elems(layout)),
            1 << m_align_size_in_byte_log2);
}

void Image2DTensorFormatBase::assert_valid(const TensorLayout& layout) const {
    megdnn_assert(layout.dtype.valid() && layout.ndim > m_align_axis);
    ptrdiff_t first_non_zero_stride = 0;
    for (int i = layout.ndim - 1; i >= 0; --i) {
        megdnn_assert(layout.shape[i] && layout.stride[i] >= 0);
        if (i < static_cast<int>(m_align_axis) && !first_non_zero_stride) {
            first_non_zero_stride = layout.stride[i];
        }
    }
    size_t mask = align_size_in_byte(layout.dtype.size_log()) - 1;
    megdnn_assert(!(first_non_zero_stride & mask),
                  "first stride is %d, but alignment is %zu",
                  static_cast<int>(first_non_zero_stride), mask + 1);
}

size_t Image2DTensorFormatBase::image_width_elems(
        const TensorLayout& layout) const {
    size_t high_elem = 0;
    for (size_t i = m_align_axis; i < layout.ndim; ++i) {
        high_elem += (layout.shape[i] - 1) * layout.stride[i];
    }
    return high_elem + 1;
}

std::string Image2DTensorFormatBase::to_string() const {
    return ssprintf("I2D{%zu,%d}", m_align_axis,
                    1 << m_align_size_in_byte_log2);
}

/* ===================== Image2DPackedTensorFormatBase ===================== */

template <size_t PIXEL_SIZE>
size_t Image2DPackedTensorFormatBase<PIXEL_SIZE>::image_width(
        const TensorLayout& layout) const {
    auto ret = image_width_elems(layout);
    megdnn_assert(ret % PIXEL_SIZE == 0);
    return ret / PIXEL_SIZE;
}

template <size_t PIXEL_SIZE>
void Image2DPackedTensorFormatBase<PIXEL_SIZE>::assert_valid(
        const TensorLayout& layout) const {
    Image2DTensorFormatBase::assert_valid(layout);
    megdnn_assert(!(layout.shape[layout.ndim - 1] % PIXEL_SIZE),
                  "bad shape: %zu", layout.shape[layout.ndim - 1]);
}

namespace megdnn {
namespace detail {
template class Image2DPackedTensorFormatBase<4>;
}  // namespace detail
}  // namespace megdnn

/* ===================== Image2DPack4TensorFormat  ===================== */
TensorFormat Image2DPack4TensorFormat::make_raw(size_t align_axis,
                                                size_t align_size_in_byte) {
    static std::mutex mtx;
    static std::unordered_map<uint64_t,
                              std::unique_ptr<Image2DPack4TensorFormat>>
            cache;
    megdnn_assert(std::max(align_axis, align_size_in_byte) <=
                  std::numeric_limits<uint32_t>::max());
    MEGDNN_LOCK_GUARD(mtx);
    auto&& ptr = cache[(static_cast<uint64_t>(align_axis) << 32) |
                       align_size_in_byte];
    if (!ptr) {
        ptr.reset(new Image2DPack4TensorFormat{align_axis, align_size_in_byte});
    }
    return impl_to_tensor_format(ptr.get());
}

TensorFormat Image2DPack4TensorFormat::make(size_t align_axis,
                                            const Handle* handle) {
    return make_raw(align_axis, handle->image2d_pitch_alignment());
}

TensorFormat Image2DPack4TensorFormat::deserialize(const Handle* handle,
                                                   const void* buf,
                                                   size_t size) {
    megdnn_assert(size == sizeof(SerializePack));
    auto pack = *static_cast<const SerializePack*>(buf);
    return make(pack.align_axis, handle);
}

TensorFormat Image2DPack4TensorFormat::change_axis(size_t axis) const {
    return make_raw(axis, align_size_in_byte());
}

// vim: syntax=cpp.doxygen